作用相关爱因斯坦-希尔伯特拉格朗日场方程的变分推导

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Jordi Gaset Rifà, Arnau Mas
{"title":"作用相关爱因斯坦-希尔伯特拉格朗日场方程的变分推导","authors":"Jordi Gaset Rifà, Arnau Mas","doi":"10.3934/jgm.2023014","DOIUrl":null,"url":null,"abstract":"We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian\",\"authors\":\"Jordi Gaset Rifà, Arnau Mas\",\"doi\":\"10.3934/jgm.2023014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2023014\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2023014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们推导了爱因斯坦-希尔伯特拉格朗日函数的运动方程,作为赫格洛兹变分问题的一个具体实例。作用依赖的拉格朗日量导致耗散动力学,这是用拉格朗日场论的标准方法无法得到的。这种一阶理论相对来说比较容易理解,但是奇异或高阶动作依赖场理论的例子很少。这项工作构成了这种理论的一个例子。通过用清晰的几何术语来描述这个问题,我们能够得到一个洛伦兹不变方程组,这与之前的尝试形成了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian
We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信