基于5.8 GHz全隧道二极管的20µW、88mV和48db增益全无源后向散射RFID标签

A. Eid, J. Hester, M. Tentzeris
{"title":"基于5.8 GHz全隧道二极管的20µW、88mV和48db增益全无源后向散射RFID标签","authors":"A. Eid, J. Hester, M. Tentzeris","doi":"10.1109/IMS30576.2020.9224116","DOIUrl":null,"url":null,"abstract":"Backscatter front-ends are generally praised for their sub-µW power consumptions. However, this power consumption ends up being dwarfed by that of its modulating baseband circuitry. Furthermore, they are plagued by short reading ranges. The work reported in this paper demonstrates, for the first time, the use of a combined single-element oscillator/reflection-amplifier architecture. This remarkable system combines two critical features for range extension-the highest reflection-amplification RFID gain of the literature (48 dB) and higher-than-MHz sub-carrier offset frequency-while displaying a power consumption lower than that of any comparable commercial (amplifier-less) oscillator: 20 µW. This is achieved by using a tunnel-diode, whose properties as a baseband-oscillator and a 5.8 GHz reflection-amplifier are analyzed, before both are combined. This highly voltage-sensitive system is synergistically associated with a first-of-a-kind self-regulating tunnel diode-based rectifier to propose a fully-tunnel-diodes-based passive RFID design which could enable the future of practical km-range RFIDs.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"30 1","pages":"607-610"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A 5.8 GHz Fully-Tunnel-Diodes-Based 20 µW, 88mV, and 48 dB-Gain Fully-Passive Backscattering RFID Tag\",\"authors\":\"A. Eid, J. Hester, M. Tentzeris\",\"doi\":\"10.1109/IMS30576.2020.9224116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backscatter front-ends are generally praised for their sub-µW power consumptions. However, this power consumption ends up being dwarfed by that of its modulating baseband circuitry. Furthermore, they are plagued by short reading ranges. The work reported in this paper demonstrates, for the first time, the use of a combined single-element oscillator/reflection-amplifier architecture. This remarkable system combines two critical features for range extension-the highest reflection-amplification RFID gain of the literature (48 dB) and higher-than-MHz sub-carrier offset frequency-while displaying a power consumption lower than that of any comparable commercial (amplifier-less) oscillator: 20 µW. This is achieved by using a tunnel-diode, whose properties as a baseband-oscillator and a 5.8 GHz reflection-amplifier are analyzed, before both are combined. This highly voltage-sensitive system is synergistically associated with a first-of-a-kind self-regulating tunnel diode-based rectifier to propose a fully-tunnel-diodes-based passive RFID design which could enable the future of practical km-range RFIDs.\",\"PeriodicalId\":6784,\"journal\":{\"name\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"volume\":\"30 1\",\"pages\":\"607-610\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMS30576.2020.9224116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9224116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

后向散射前端通常因其低于µW的功耗而受到称赞。然而,与调制基带电路的功耗相比,这种功耗最终显得微不足道。此外,它们还受到读数范围短的困扰。本文首次展示了单元件振荡器/反射放大器组合结构的使用。这个卓越的系统结合了两个关键特性,用于范围扩展-文献中最高的反射放大RFID增益(48 dB)和高于mhz的子载波偏移频率-同时显示功耗低于任何可比的商用(无放大器)振荡器:20 μ W。这是通过使用隧道二极管来实现的,在将两者组合之前,分析了隧道二极管作为基带振荡器和5.8 GHz反射放大器的特性。这种高电压敏感系统与第一种基于自调节隧道二极管的整流器协同相关,提出了一种基于全隧道二极管的无源RFID设计,可以实现实用的公里范围RFID的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 5.8 GHz Fully-Tunnel-Diodes-Based 20 µW, 88mV, and 48 dB-Gain Fully-Passive Backscattering RFID Tag
Backscatter front-ends are generally praised for their sub-µW power consumptions. However, this power consumption ends up being dwarfed by that of its modulating baseband circuitry. Furthermore, they are plagued by short reading ranges. The work reported in this paper demonstrates, for the first time, the use of a combined single-element oscillator/reflection-amplifier architecture. This remarkable system combines two critical features for range extension-the highest reflection-amplification RFID gain of the literature (48 dB) and higher-than-MHz sub-carrier offset frequency-while displaying a power consumption lower than that of any comparable commercial (amplifier-less) oscillator: 20 µW. This is achieved by using a tunnel-diode, whose properties as a baseband-oscillator and a 5.8 GHz reflection-amplifier are analyzed, before both are combined. This highly voltage-sensitive system is synergistically associated with a first-of-a-kind self-regulating tunnel diode-based rectifier to propose a fully-tunnel-diodes-based passive RFID design which could enable the future of practical km-range RFIDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信