基于FPGA的耦合可变输入LCG和时钟分频器大周期伪随机位发生器

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Mangal D. Gupta, Rajeev K. Chauhan
{"title":"基于FPGA的耦合可变输入LCG和时钟分频器大周期伪随机位发生器","authors":"Mangal D. Gupta,&nbsp;Rajeev K. Chauhan","doi":"10.1049/cdt2.12027","DOIUrl":null,"url":null,"abstract":"<p>The authors present a new method for the generation of pseudorandom bits, based on coupled variable input linear congruential generator (LCG) and a clock divider. To prevent the system from falling into short-period orbits as well as increasing the randomness of the generated bit sequences, the proposed algorithm periodically changes the seed parameters of the LCG blocks. The proposed clock divider-based pseudorandom bit generator is compared with other LCG-based realisations, showing great improvement. First, a clock divider is utilised for generating a maximum length of 2<sup>2<b><i>n</i></b></sup> pseudorandom bits for <i>n</i>-bit operands size which leads to lowering the hardware cost. Secondly, it generates high-speed random bits at a uniform clock rate with one initial clock latency. Third, the proposed technique provides good statistical properties. The proposed architecture is implemented using Verilog HDL and further prototyped on commercially available field programmable gate array (FPGA) devices Virtex-5, Virtex-7, and Artix-7. The realisation of the proposed architecture in these FPGA devices accomplishes an improved data throughput and utilises minimum FPGA resources (in terms of look-up-tables and flip-flops) which are compared with the existing techniques. The generated bit sequence from the experiment is further analysed briefly for sequence size and verified for randomness by using the National Institute of Standards and Technology benchmark test.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 5","pages":"349-361"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12027","citationCount":"6","resultStr":"{\"title\":\"Coupled variable-input LCG and clock divider-based large period pseudo-random bit generator on FPGA\",\"authors\":\"Mangal D. Gupta,&nbsp;Rajeev K. Chauhan\",\"doi\":\"10.1049/cdt2.12027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The authors present a new method for the generation of pseudorandom bits, based on coupled variable input linear congruential generator (LCG) and a clock divider. To prevent the system from falling into short-period orbits as well as increasing the randomness of the generated bit sequences, the proposed algorithm periodically changes the seed parameters of the LCG blocks. The proposed clock divider-based pseudorandom bit generator is compared with other LCG-based realisations, showing great improvement. First, a clock divider is utilised for generating a maximum length of 2<sup>2<b><i>n</i></b></sup> pseudorandom bits for <i>n</i>-bit operands size which leads to lowering the hardware cost. Secondly, it generates high-speed random bits at a uniform clock rate with one initial clock latency. Third, the proposed technique provides good statistical properties. The proposed architecture is implemented using Verilog HDL and further prototyped on commercially available field programmable gate array (FPGA) devices Virtex-5, Virtex-7, and Artix-7. The realisation of the proposed architecture in these FPGA devices accomplishes an improved data throughput and utilises minimum FPGA resources (in terms of look-up-tables and flip-flops) which are compared with the existing techniques. The generated bit sequence from the experiment is further analysed briefly for sequence size and verified for randomness by using the National Institute of Standards and Technology benchmark test.</p>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"15 5\",\"pages\":\"349-361\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12027\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12027\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于耦合变量输入线性同余发生器(LCG)和时钟分频器的伪随机比特生成方法。为了防止系统陷入短周期轨道并增加所生成比特序列的随机性,该算法周期性地改变LCG块的种子参数。本文提出的基于时钟分频器的伪随机位发生器与其他基于lgc的实现进行了比较,显示出很大的改进。首先,利用时钟分配器为n位操作数大小生成22n个伪随机位的最大长度,从而降低硬件成本。其次,它以统一的时钟速率生成高速随机比特,初始时钟延迟为1。第三,该技术提供了良好的统计特性。所提出的架构使用Verilog HDL实现,并在商用现场可编程门阵列(FPGA)设备Virtex-5、Virtex-7和Artix-7上进一步原型化。与现有技术相比,在这些FPGA器件中实现所提出的架构实现了改进的数据吞吐量,并利用了最小的FPGA资源(就查找表和触发器而言)。实验生成的比特序列进一步进行了序列大小的简要分析,并通过国家标准与技术研究院基准测试验证了其随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coupled variable-input LCG and clock divider-based large period pseudo-random bit generator on FPGA

Coupled variable-input LCG and clock divider-based large period pseudo-random bit generator on FPGA

The authors present a new method for the generation of pseudorandom bits, based on coupled variable input linear congruential generator (LCG) and a clock divider. To prevent the system from falling into short-period orbits as well as increasing the randomness of the generated bit sequences, the proposed algorithm periodically changes the seed parameters of the LCG blocks. The proposed clock divider-based pseudorandom bit generator is compared with other LCG-based realisations, showing great improvement. First, a clock divider is utilised for generating a maximum length of 22n pseudorandom bits for n-bit operands size which leads to lowering the hardware cost. Secondly, it generates high-speed random bits at a uniform clock rate with one initial clock latency. Third, the proposed technique provides good statistical properties. The proposed architecture is implemented using Verilog HDL and further prototyped on commercially available field programmable gate array (FPGA) devices Virtex-5, Virtex-7, and Artix-7. The realisation of the proposed architecture in these FPGA devices accomplishes an improved data throughput and utilises minimum FPGA resources (in terms of look-up-tables and flip-flops) which are compared with the existing techniques. The generated bit sequence from the experiment is further analysed briefly for sequence size and verified for randomness by using the National Institute of Standards and Technology benchmark test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信