{"title":"物化视图选择作为约束进化优化","authors":"J. Yu, X. Yao, C. Choi, G. Gou","doi":"10.1109/TSMCC.2003.818494","DOIUrl":null,"url":null,"abstract":"One of the important issues in data warehouse development is the selection of a set of views to materialize in order to accelerate a large number of on-line analytical processing (OLAP) queries. The maintenance-cost view-selection problem is to select a set of materialized views under certain resource constraints for the purpose of minimizing the total query processing cost. However, the search space for possible materialized views may be exponentially large. A heuristic algorithm often has to be used to find a near optimal solution. In this paper, for the maintenance-cost view-selection problem, we propose a new constrained evolutionary algorithm. Constraints are incorporated into the algorithm through a stochastic ranking procedure. No penalty functions are used. Our experimental results show that the constraint handling technique, i.e., stochastic ranking, can deal with constraints effectively. Our algorithm is able to find a near-optimal feasible solution and scales with the problem size well.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"99 1","pages":"458-467"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"Materialized view selection as constrained evolutionary optimization\",\"authors\":\"J. Yu, X. Yao, C. Choi, G. Gou\",\"doi\":\"10.1109/TSMCC.2003.818494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the important issues in data warehouse development is the selection of a set of views to materialize in order to accelerate a large number of on-line analytical processing (OLAP) queries. The maintenance-cost view-selection problem is to select a set of materialized views under certain resource constraints for the purpose of minimizing the total query processing cost. However, the search space for possible materialized views may be exponentially large. A heuristic algorithm often has to be used to find a near optimal solution. In this paper, for the maintenance-cost view-selection problem, we propose a new constrained evolutionary algorithm. Constraints are incorporated into the algorithm through a stochastic ranking procedure. No penalty functions are used. Our experimental results show that the constraint handling technique, i.e., stochastic ranking, can deal with constraints effectively. Our algorithm is able to find a near-optimal feasible solution and scales with the problem size well.\",\"PeriodicalId\":55005,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"volume\":\"99 1\",\"pages\":\"458-467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCC.2003.818494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2003.818494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Materialized view selection as constrained evolutionary optimization
One of the important issues in data warehouse development is the selection of a set of views to materialize in order to accelerate a large number of on-line analytical processing (OLAP) queries. The maintenance-cost view-selection problem is to select a set of materialized views under certain resource constraints for the purpose of minimizing the total query processing cost. However, the search space for possible materialized views may be exponentially large. A heuristic algorithm often has to be used to find a near optimal solution. In this paper, for the maintenance-cost view-selection problem, we propose a new constrained evolutionary algorithm. Constraints are incorporated into the algorithm through a stochastic ranking procedure. No penalty functions are used. Our experimental results show that the constraint handling technique, i.e., stochastic ranking, can deal with constraints effectively. Our algorithm is able to find a near-optimal feasible solution and scales with the problem size well.