利用(k, ψ)-比例分数积分算子的新广义Hermite-Hadamard-Mercer型不等式

Henok Desalegn Desta, E. Nwaeze, Tadesse Abdi, J. Mijena
{"title":"利用(k, ψ)-比例分数积分算子的新广义Hermite-Hadamard-Mercer型不等式","authors":"Henok Desalegn Desta, E. Nwaeze, Tadesse Abdi, J. Mijena","doi":"10.3390/foundations3010005","DOIUrl":null,"url":null,"abstract":"In this paper, by using Jensen–Mercer’s inequality we obtain Hermite–Hadamard–Mercer’s type inequalities for a convex function employing left-sided (k,ψ)-proportional fractional integral operators involving continuous strictly increasing function. Our findings are a generalization of some results that existed in the literature.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Generalized Hermite–Hadamard–Mercer’s Type Inequalities Using (k, ψ)-Proportional Fractional Integral Operator\",\"authors\":\"Henok Desalegn Desta, E. Nwaeze, Tadesse Abdi, J. Mijena\",\"doi\":\"10.3390/foundations3010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by using Jensen–Mercer’s inequality we obtain Hermite–Hadamard–Mercer’s type inequalities for a convex function employing left-sided (k,ψ)-proportional fractional integral operators involving continuous strictly increasing function. Our findings are a generalization of some results that existed in the literature.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Jensen-Mercer不等式,利用包含连续严格递增函数的左侧(k,ψ)比例分数积分算子,得到了凸函数的Hermite-Hadamard-Mercer型不等式。我们的发现是对文献中存在的一些结果的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Generalized Hermite–Hadamard–Mercer’s Type Inequalities Using (k, ψ)-Proportional Fractional Integral Operator
In this paper, by using Jensen–Mercer’s inequality we obtain Hermite–Hadamard–Mercer’s type inequalities for a convex function employing left-sided (k,ψ)-proportional fractional integral operators involving continuous strictly increasing function. Our findings are a generalization of some results that existed in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信