用于研究血脑屏障相关的脑生理学和病理学的工程模型

H. Kim
{"title":"用于研究血脑屏障相关的脑生理学和病理学的工程模型","authors":"H. Kim","doi":"10.51335/ORGANOID.2021.1.E10","DOIUrl":null,"url":null,"abstract":"The blood-brain barrier (BBB) is a transport barrier that suppresses the translocation of potentially harmful substances to the brain tissue. Although the BBB is known to be associated with many kinds of neuropathology, such as neuroinflammation and neurodegenerative diseases, the conventionally used animal and Transwell models cannot provide sufficient information due to genetic and functional heterogeneity in comparison with humans and limited monitoring capabilities. Recently, human cell-based three-dimensional BBB models have been developed, and these models provide in vivo-like BBB structures and functions. In this review, we provide an overview of the recent advances in BBB models with a particular focus on the simulation of BBB-associated brain physiology and neuropathology. To this end, important factors for recapitulating the in vivo characteristics of the BBB are described. Furthermore, approaches to recapitulate the BBB physiology using engineering methods are summarized. The applications of BBB models in the study of neuropathology, such as inflammation and neurodegenerative diseases, are also presented.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Engineered models for studying blood-brain-barrier-associated brain physiology and pathology\",\"authors\":\"H. Kim\",\"doi\":\"10.51335/ORGANOID.2021.1.E10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The blood-brain barrier (BBB) is a transport barrier that suppresses the translocation of potentially harmful substances to the brain tissue. Although the BBB is known to be associated with many kinds of neuropathology, such as neuroinflammation and neurodegenerative diseases, the conventionally used animal and Transwell models cannot provide sufficient information due to genetic and functional heterogeneity in comparison with humans and limited monitoring capabilities. Recently, human cell-based three-dimensional BBB models have been developed, and these models provide in vivo-like BBB structures and functions. In this review, we provide an overview of the recent advances in BBB models with a particular focus on the simulation of BBB-associated brain physiology and neuropathology. To this end, important factors for recapitulating the in vivo characteristics of the BBB are described. Furthermore, approaches to recapitulate the BBB physiology using engineering methods are summarized. The applications of BBB models in the study of neuropathology, such as inflammation and neurodegenerative diseases, are also presented.\",\"PeriodicalId\":100198,\"journal\":{\"name\":\"Brain Organoid and Systems Neuroscience Journal\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Organoid and Systems Neuroscience Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51335/ORGANOID.2021.1.E10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/ORGANOID.2021.1.E10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

血脑屏障(BBB)是一种运输屏障,可以抑制潜在有害物质向脑组织的转运。虽然血脑屏障已知与多种神经病理学相关,如神经炎症和神经退行性疾病,但由于与人类相比遗传和功能异质性以及监测能力有限,传统使用的动物和Transwell模型无法提供足够的信息。近年来,基于人体细胞的三维血脑屏障模型已经被开发出来,这些模型提供了类似于活体血脑屏障的结构和功能。在这篇综述中,我们概述了血脑屏障模型的最新进展,特别关注血脑屏障相关脑生理学和神经病理学的模拟。为此,总结血脑屏障体内特征的重要因素被描述。此外,还总结了用工程方法概括血脑屏障生理学的方法。此外,还介绍了血脑屏障模型在炎症和神经退行性疾病等神经病理学研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineered models for studying blood-brain-barrier-associated brain physiology and pathology
The blood-brain barrier (BBB) is a transport barrier that suppresses the translocation of potentially harmful substances to the brain tissue. Although the BBB is known to be associated with many kinds of neuropathology, such as neuroinflammation and neurodegenerative diseases, the conventionally used animal and Transwell models cannot provide sufficient information due to genetic and functional heterogeneity in comparison with humans and limited monitoring capabilities. Recently, human cell-based three-dimensional BBB models have been developed, and these models provide in vivo-like BBB structures and functions. In this review, we provide an overview of the recent advances in BBB models with a particular focus on the simulation of BBB-associated brain physiology and neuropathology. To this end, important factors for recapitulating the in vivo characteristics of the BBB are described. Furthermore, approaches to recapitulate the BBB physiology using engineering methods are summarized. The applications of BBB models in the study of neuropathology, such as inflammation and neurodegenerative diseases, are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信