{"title":"2节的Seifert超曲面和chen - simons泛函","authors":"Masaki Taniguchi","doi":"10.4171/qt/165","DOIUrl":null,"url":null,"abstract":"We introduce a real-valued functional on the $SU(2)$-representation space of the knot group for any oriented $2$-knot. We calculate the functionals for ribbon $2$-knots and the twisted spun $2$-knots of torus knots, $2$-bridge knots and Montesinos knots. We show several properties of the images of the functionals including a connected sum formula and relationship to the Chern-Simons functionals of Seifert hypersurfaces of $K$. As a corollary, we show that every oriented $2$-knot having a homology $3$-sphere of a certain class as its Seifert hypersurface admits an $SU(2)$-irreducible representation of a knot group. Moreover, we also relate the existence of embeddings from a homology $3$-sphere into a negative definite $4$-manifold to $SU(2)$-representations of their fundamental groups. For example, we prove that every closed definite $4$-manifold containing $\\Sigma(2,3,5,7)$ as a submanifold has an uncountable family of $SU(2)$-representations of its fundamental group. This implies that every $2$-knot having $\\Sigma(2,3,5,7)$ as a Seifert hypersurface has an uncountable family of $SU(2)$-representations of its knot group. The proofs of these results use several techniques from instanton Floer theory.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"86 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seifert hypersurfaces of 2-knots and Chern–Simons functional\",\"authors\":\"Masaki Taniguchi\",\"doi\":\"10.4171/qt/165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a real-valued functional on the $SU(2)$-representation space of the knot group for any oriented $2$-knot. We calculate the functionals for ribbon $2$-knots and the twisted spun $2$-knots of torus knots, $2$-bridge knots and Montesinos knots. We show several properties of the images of the functionals including a connected sum formula and relationship to the Chern-Simons functionals of Seifert hypersurfaces of $K$. As a corollary, we show that every oriented $2$-knot having a homology $3$-sphere of a certain class as its Seifert hypersurface admits an $SU(2)$-irreducible representation of a knot group. Moreover, we also relate the existence of embeddings from a homology $3$-sphere into a negative definite $4$-manifold to $SU(2)$-representations of their fundamental groups. For example, we prove that every closed definite $4$-manifold containing $\\\\Sigma(2,3,5,7)$ as a submanifold has an uncountable family of $SU(2)$-representations of its fundamental group. This implies that every $2$-knot having $\\\\Sigma(2,3,5,7)$ as a Seifert hypersurface has an uncountable family of $SU(2)$-representations of its knot group. The proofs of these results use several techniques from instanton Floer theory.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/165\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/165","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Seifert hypersurfaces of 2-knots and Chern–Simons functional
We introduce a real-valued functional on the $SU(2)$-representation space of the knot group for any oriented $2$-knot. We calculate the functionals for ribbon $2$-knots and the twisted spun $2$-knots of torus knots, $2$-bridge knots and Montesinos knots. We show several properties of the images of the functionals including a connected sum formula and relationship to the Chern-Simons functionals of Seifert hypersurfaces of $K$. As a corollary, we show that every oriented $2$-knot having a homology $3$-sphere of a certain class as its Seifert hypersurface admits an $SU(2)$-irreducible representation of a knot group. Moreover, we also relate the existence of embeddings from a homology $3$-sphere into a negative definite $4$-manifold to $SU(2)$-representations of their fundamental groups. For example, we prove that every closed definite $4$-manifold containing $\Sigma(2,3,5,7)$ as a submanifold has an uncountable family of $SU(2)$-representations of its fundamental group. This implies that every $2$-knot having $\Sigma(2,3,5,7)$ as a Seifert hypersurface has an uncountable family of $SU(2)$-representations of its knot group. The proofs of these results use several techniques from instanton Floer theory.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.