{"title":"基于遗传算法的航空发动机气路故障支持向量机外推","authors":"Yixiong Yu","doi":"10.32604/sv.2019.07887","DOIUrl":null,"url":null,"abstract":"Mining aeroengine operational data and developing fault diagnosis models for aeroengines are to avoid running aeroengines under undesired conditions. Because of the complexity of working environment and faults of aeroengines, it is unavoidable that the monitored parameters vary widely and possess larger noise levels. This paper reports the extrapolation of a diagnosis model for 20 gas path faults of a double-spool turbofan civil aeroengine. By applying support vector machine (SVM) algorithm together with genetic algorithm (GA), the fault diagnosis model is obtained from the training set that was based on the deviations of the monitored parameters superimposed with the noise level of 10%. The SVM model (C = 24.7034; γ = 179.835) was extrapolated for the samples whose noise levels were larger than 10%. The accuracies of extrapolation for samples with the noise levels of 20% and 30% are 97% and 94%, respectively. Compared with the models reported on the same faults, the extrapolation results of the GASVM model are accurate.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"91 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extrapolation for Aeroengine Gas Path Faults with SVM Bases on Genetic Algorithm\",\"authors\":\"Yixiong Yu\",\"doi\":\"10.32604/sv.2019.07887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining aeroengine operational data and developing fault diagnosis models for aeroengines are to avoid running aeroengines under undesired conditions. Because of the complexity of working environment and faults of aeroengines, it is unavoidable that the monitored parameters vary widely and possess larger noise levels. This paper reports the extrapolation of a diagnosis model for 20 gas path faults of a double-spool turbofan civil aeroengine. By applying support vector machine (SVM) algorithm together with genetic algorithm (GA), the fault diagnosis model is obtained from the training set that was based on the deviations of the monitored parameters superimposed with the noise level of 10%. The SVM model (C = 24.7034; γ = 179.835) was extrapolated for the samples whose noise levels were larger than 10%. The accuracies of extrapolation for samples with the noise levels of 20% and 30% are 97% and 94%, respectively. Compared with the models reported on the same faults, the extrapolation results of the GASVM model are accurate.\",\"PeriodicalId\":49496,\"journal\":{\"name\":\"Sound and Vibration\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sound and Vibration\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.32604/sv.2019.07887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/sv.2019.07887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Extrapolation for Aeroengine Gas Path Faults with SVM Bases on Genetic Algorithm
Mining aeroengine operational data and developing fault diagnosis models for aeroengines are to avoid running aeroengines under undesired conditions. Because of the complexity of working environment and faults of aeroengines, it is unavoidable that the monitored parameters vary widely and possess larger noise levels. This paper reports the extrapolation of a diagnosis model for 20 gas path faults of a double-spool turbofan civil aeroengine. By applying support vector machine (SVM) algorithm together with genetic algorithm (GA), the fault diagnosis model is obtained from the training set that was based on the deviations of the monitored parameters superimposed with the noise level of 10%. The SVM model (C = 24.7034; γ = 179.835) was extrapolated for the samples whose noise levels were larger than 10%. The accuracies of extrapolation for samples with the noise levels of 20% and 30% are 97% and 94%, respectively. Compared with the models reported on the same faults, the extrapolation results of the GASVM model are accurate.
期刊介绍:
Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications.
Papers are sought that contribute to the following general topics:
-broad-based interests in noise and vibration-
dynamic measurements-
structural analysis-
computer-aided engineering-
machinery reliability-
dynamic testing