随机立体平面图

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Drmota, M. Noy, Cl'ement Requil'e, Juanjo Ru'e
{"title":"随机立体平面图","authors":"M. Drmota, M. Noy, Cl'ement Requil'e, Juanjo Ru'e","doi":"10.37236/11619","DOIUrl":null,"url":null,"abstract":"We analyse uniform random cubic rooted planar maps and obtain limiting distributions for several parameters of interest.From the enumerative point of view, we present a unified approach for the enumeration of several classes of cubic planar maps, which allow us to recover known results in a more general and transparent way.This approach allows us to obtain new enumerative results. \nConcerning random maps, we first obtain the distribution of the degree of the root face, which has an exponential tail as for other classes of random maps. Our main result is a limiting map-Airy distribution law for the size of the largest block $L$, whose expectation is asymptotically $n/\\sqrt{3}$ in a random cubic map with $n+2$ faces.We prove analogous results for the size of the largest cubic block, obtained from $L$ by erasing all vertices of degree two, and for the size of the largest 3-connected component, whose expected values are respectively $n/2$ and $n/4$.To obtain these results we need to analyse a new type of composition scheme which has not been treated by Banderier et al. [Random Structures Algorithms 2001].","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random Cubic Planar Maps\",\"authors\":\"M. Drmota, M. Noy, Cl'ement Requil'e, Juanjo Ru'e\",\"doi\":\"10.37236/11619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse uniform random cubic rooted planar maps and obtain limiting distributions for several parameters of interest.From the enumerative point of view, we present a unified approach for the enumeration of several classes of cubic planar maps, which allow us to recover known results in a more general and transparent way.This approach allows us to obtain new enumerative results. \\nConcerning random maps, we first obtain the distribution of the degree of the root face, which has an exponential tail as for other classes of random maps. Our main result is a limiting map-Airy distribution law for the size of the largest block $L$, whose expectation is asymptotically $n/\\\\sqrt{3}$ in a random cubic map with $n+2$ faces.We prove analogous results for the size of the largest cubic block, obtained from $L$ by erasing all vertices of degree two, and for the size of the largest 3-connected component, whose expected values are respectively $n/2$ and $n/4$.To obtain these results we need to analyse a new type of composition scheme which has not been treated by Banderier et al. [Random Structures Algorithms 2001].\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11619\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11619","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们分析了均匀随机三次方根平面映射,并得到了几个感兴趣参数的极限分布。从枚举的角度来看,我们提出了一种统一的方法来枚举几类立方平面图,这使我们能够以更一般和透明的方式恢复已知的结果。这种方法使我们能够得到新的枚举结果。对于随机映射,我们首先得到了根面度的分布,它与其他类型的随机映射一样具有指数尾。我们的主要结果是最大块$L$大小的限制映射- airy分布律,其期望在具有$n+2$面的随机三次映射中渐近为$n/\sqrt{3}$。对于最大立方块的大小,我们证明了类似的结果,从$L$中通过擦除所有二阶顶点得到的最大立方块的大小,以及最大的3连通分量的大小,其期望值分别为$n/2$和$n/4$。为了获得这些结果,我们需要分析一种新的组合方案,这种方案还没有被Banderier等人处理过[Random Structures Algorithms 2001]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Cubic Planar Maps
We analyse uniform random cubic rooted planar maps and obtain limiting distributions for several parameters of interest.From the enumerative point of view, we present a unified approach for the enumeration of several classes of cubic planar maps, which allow us to recover known results in a more general and transparent way.This approach allows us to obtain new enumerative results. Concerning random maps, we first obtain the distribution of the degree of the root face, which has an exponential tail as for other classes of random maps. Our main result is a limiting map-Airy distribution law for the size of the largest block $L$, whose expectation is asymptotically $n/\sqrt{3}$ in a random cubic map with $n+2$ faces.We prove analogous results for the size of the largest cubic block, obtained from $L$ by erasing all vertices of degree two, and for the size of the largest 3-connected component, whose expected values are respectively $n/2$ and $n/4$.To obtain these results we need to analyse a new type of composition scheme which has not been treated by Banderier et al. [Random Structures Algorithms 2001].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信