{"title":"结构对石墨烯纳米带振动频率的影响","authors":"晓彤 江","doi":"10.12677/cmp.2022.112002","DOIUrl":null,"url":null,"abstract":"Graphene is a lamellar structure of graphite and it is one of important research objects in the current materials and condensed matter disciplines. It has a wide range of development prospect due to its unique structure and excellent properties. Therefore, the research on the physical properties of graphene has become a particularly important part of the present. In this study, the molecular dynamics method was mainly used to simulate the dynamic process of bending vibration of graphene nanoribbons after compressive deformation. The effects of structure size, temperature,","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"95 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Structure on Vibration Frequency of the Graphene Nanoribbon\",\"authors\":\"晓彤 江\",\"doi\":\"10.12677/cmp.2022.112002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene is a lamellar structure of graphite and it is one of important research objects in the current materials and condensed matter disciplines. It has a wide range of development prospect due to its unique structure and excellent properties. Therefore, the research on the physical properties of graphene has become a particularly important part of the present. In this study, the molecular dynamics method was mainly used to simulate the dynamic process of bending vibration of graphene nanoribbons after compressive deformation. The effects of structure size, temperature,\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.12677/cmp.2022.112002\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.12677/cmp.2022.112002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Effect of Structure on Vibration Frequency of the Graphene Nanoribbon
Graphene is a lamellar structure of graphite and it is one of important research objects in the current materials and condensed matter disciplines. It has a wide range of development prospect due to its unique structure and excellent properties. Therefore, the research on the physical properties of graphene has become a particularly important part of the present. In this study, the molecular dynamics method was mainly used to simulate the dynamic process of bending vibration of graphene nanoribbons after compressive deformation. The effects of structure size, temperature,
期刊介绍:
Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties.
Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.