程序性细胞死亡的机制

Abdu-Alhameed A Ali Azzwali,  Azab Elsayed Azab
{"title":"程序性细胞死亡的机制","authors":"Abdu-Alhameed A Ali Azzwali,  Azab Elsayed Azab","doi":"10.15406/jabb.2019.06.00188","DOIUrl":null,"url":null,"abstract":"The present review aims to spotlight on the mechanisms and stages of programmed cell death. Apoptosis, known as programmed cell death, is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. It can also act as a protective mechanism, for example, in immune response or if cells are damaged by toxin agents or diseases. In cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway in cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. Corticosteroids can cause apoptotic death in a number of cells. A number of changes in cell morphology are related to the different stages of apoptosis, which includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis, the intrinsic (mitochondrial) and extrinsic (death receptor) are the two major paths that are interlinked and that can effect one another. Conclusion: It can be concluded that apoptosis is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. Drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. The apoptosis, stages are includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis.","PeriodicalId":15033,"journal":{"name":"Journal of Applied Biotechnology & Bioengineering","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanisms of programmed cell death\",\"authors\":\"Abdu-Alhameed A Ali Azzwali,  Azab Elsayed Azab\",\"doi\":\"10.15406/jabb.2019.06.00188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present review aims to spotlight on the mechanisms and stages of programmed cell death. Apoptosis, known as programmed cell death, is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. It can also act as a protective mechanism, for example, in immune response or if cells are damaged by toxin agents or diseases. In cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway in cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. Corticosteroids can cause apoptotic death in a number of cells. A number of changes in cell morphology are related to the different stages of apoptosis, which includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis, the intrinsic (mitochondrial) and extrinsic (death receptor) are the two major paths that are interlinked and that can effect one another. Conclusion: It can be concluded that apoptosis is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. Drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. The apoptosis, stages are includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis.\",\"PeriodicalId\":15033,\"journal\":{\"name\":\"Journal of Applied Biotechnology & Bioengineering\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology & Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/jabb.2019.06.00188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology & Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/jabb.2019.06.00188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本综述的目的是关注程序性细胞死亡的机制和阶段。细胞凋亡,又称程序性细胞死亡,是一种体内平衡机制,通常发生在发育和衰老过程中,目的是使细胞保持在组织中。它也可以作为一种保护机制,例如,在免疫反应中,或者当细胞被毒素或疾病破坏时。在癌症治疗中,化疗中使用的药物和照射导致DNA损伤,从而通过p53依赖途径触发细胞凋亡。在癌症治疗中,化疗中使用的药物和照射导致DNA损伤,从而通过p53依赖途径触发细胞凋亡。皮质类固醇可引起许多细胞凋亡。细胞形态学的许多变化与细胞凋亡的不同阶段有关,包括核DNA断裂、细胞收缩、染色质凝聚、膜起泡和凋亡小体的形成。细胞凋亡有三种途径,内在的(线粒体)和外在的(死亡受体)是相互联系的两种主要途径,它们可以相互影响。结论:细胞凋亡是一种体内平衡机制,通常发生在细胞发育和衰老过程中,目的是使细胞保持在组织中。化疗中使用的药物和照射导致DNA损伤,从而通过p53依赖途径触发细胞凋亡。细胞凋亡的阶段包括核DNA断裂、细胞收缩、染色质缩聚、膜起泡和凋亡小体的形成。细胞凋亡有三种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms of programmed cell death
The present review aims to spotlight on the mechanisms and stages of programmed cell death. Apoptosis, known as programmed cell death, is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. It can also act as a protective mechanism, for example, in immune response or if cells are damaged by toxin agents or diseases. In cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway in cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. Corticosteroids can cause apoptotic death in a number of cells. A number of changes in cell morphology are related to the different stages of apoptosis, which includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis, the intrinsic (mitochondrial) and extrinsic (death receptor) are the two major paths that are interlinked and that can effect one another. Conclusion: It can be concluded that apoptosis is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. Drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. The apoptosis, stages are includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信