SPAD DCNN:利用小成像激光雷达和DCNN进行定位

Seigo Ito, S. Hiratsuka, M. Ohta, H. Matsubara, Masaru Ogawa
{"title":"SPAD DCNN:利用小成像激光雷达和DCNN进行定位","authors":"Seigo Ito, S. Hiratsuka, M. Ohta, H. Matsubara, Masaru Ogawa","doi":"10.1109/IROS.2017.8206167","DOIUrl":null,"url":null,"abstract":"Small 3D LIDAR and a multimodal-based localization are fundamentally important for autonomous robots. This paper describes presentation and demonstration of a sensor and a method for LIDAR-image based localization. Our small LIDAR, named SPAD LIDAR, uses a single-photon avalanche diode (SPAD). The SPAD LIDAR incorporates laser receiver and environmental light receiver in a single chip. Therefore, the sensor simultaneously outputs range data and monocular image data. By virtue of this structure, the sensor requires no external calibration between range data and monocular image data. Based on this sensor, we introduce a localization method using a deep convolutional neural network (SPAD DCNN), which fuses SPAD LIDAR outputs: range data, monocular image data, and peak intensity data. Our method regresses LIDAR's position in an environment. We also introduce improved SPAD DCNN, designated as Fast SPAD DCNN. To reduce the computational demands of SPAD DCNN, Fast SPAD DCNN integrates range data and peak intensity data. The integrated data reduces runtime without greatly increasing localization error compared to the conventional method. We evaluate our SPAD DCNN and Fast SPAD DCNN localization method in indoor environments and compare its performance. Results show that SPAD DCNN and Fast SPAD DCNN improve localization in terms of accuracy and runtime.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"67 1","pages":"3312-3317"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SPAD DCNN: Localization with small imaging LIDAR and DCNN\",\"authors\":\"Seigo Ito, S. Hiratsuka, M. Ohta, H. Matsubara, Masaru Ogawa\",\"doi\":\"10.1109/IROS.2017.8206167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small 3D LIDAR and a multimodal-based localization are fundamentally important for autonomous robots. This paper describes presentation and demonstration of a sensor and a method for LIDAR-image based localization. Our small LIDAR, named SPAD LIDAR, uses a single-photon avalanche diode (SPAD). The SPAD LIDAR incorporates laser receiver and environmental light receiver in a single chip. Therefore, the sensor simultaneously outputs range data and monocular image data. By virtue of this structure, the sensor requires no external calibration between range data and monocular image data. Based on this sensor, we introduce a localization method using a deep convolutional neural network (SPAD DCNN), which fuses SPAD LIDAR outputs: range data, monocular image data, and peak intensity data. Our method regresses LIDAR's position in an environment. We also introduce improved SPAD DCNN, designated as Fast SPAD DCNN. To reduce the computational demands of SPAD DCNN, Fast SPAD DCNN integrates range data and peak intensity data. The integrated data reduces runtime without greatly increasing localization error compared to the conventional method. We evaluate our SPAD DCNN and Fast SPAD DCNN localization method in indoor environments and compare its performance. Results show that SPAD DCNN and Fast SPAD DCNN improve localization in terms of accuracy and runtime.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"67 1\",\"pages\":\"3312-3317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

小型3D激光雷达和基于多模态的定位对于自主机器人至关重要。本文介绍了一种基于激光雷达图像的定位传感器和方法。我们的小型激光雷达,命名为SPAD激光雷达,使用单光子雪崩二极管(SPAD)。SPAD激光雷达将激光接收器和环境光接收器集成在一个芯片中。因此,传感器同时输出距离数据和单目图像数据。由于这种结构,传感器不需要在距离数据和单目图像数据之间进行外部校准。基于该传感器,我们引入了一种基于深度卷积神经网络(SPAD DCNN)的定位方法,该方法融合了SPAD激光雷达输出:距离数据、单眼图像数据和峰值强度数据。我们的方法回归了激光雷达在环境中的位置。我们还推出了改进的SPAD DCNN,称为Fast SPAD DCNN。为了减少SPAD DCNN的计算量,Fast SPAD DCNN将距离数据和峰值强度数据集成在一起。与传统方法相比,集成后的数据在不显著增加定位误差的情况下减少了运行时间。我们在室内环境下对SPAD DCNN和Fast SPAD DCNN定位方法进行了评估,并比较了其性能。结果表明,SPAD DCNN和Fast SPAD DCNN在定位精度和运行时间上都有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPAD DCNN: Localization with small imaging LIDAR and DCNN
Small 3D LIDAR and a multimodal-based localization are fundamentally important for autonomous robots. This paper describes presentation and demonstration of a sensor and a method for LIDAR-image based localization. Our small LIDAR, named SPAD LIDAR, uses a single-photon avalanche diode (SPAD). The SPAD LIDAR incorporates laser receiver and environmental light receiver in a single chip. Therefore, the sensor simultaneously outputs range data and monocular image data. By virtue of this structure, the sensor requires no external calibration between range data and monocular image data. Based on this sensor, we introduce a localization method using a deep convolutional neural network (SPAD DCNN), which fuses SPAD LIDAR outputs: range data, monocular image data, and peak intensity data. Our method regresses LIDAR's position in an environment. We also introduce improved SPAD DCNN, designated as Fast SPAD DCNN. To reduce the computational demands of SPAD DCNN, Fast SPAD DCNN integrates range data and peak intensity data. The integrated data reduces runtime without greatly increasing localization error compared to the conventional method. We evaluate our SPAD DCNN and Fast SPAD DCNN localization method in indoor environments and compare its performance. Results show that SPAD DCNN and Fast SPAD DCNN improve localization in terms of accuracy and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信