{"title":"修剪后的银杏叶片的光合色素和叶片大小明显增加","authors":"H K Lichtenthaler, E Abuslima, P Nick","doi":"10.32615/ps.2023.020","DOIUrl":null,"url":null,"abstract":"<p><p>A 50-year-old solitary, sun-exposed ginkgo tree had strongly been pruned in the fall of 2021. Very few buds for the formation of new leaves, twigs, and branches were left over. In spring 2022, these few remaining buds responded with the formation of a different leaf type. These leaves were 2.7 times larger and also thicker than in the years before. In addition, the mean content of total chlorophylls [Chl (<i>a</i>+<i>b</i>)] per leaf area unit of dark-green leaves was 1.45, those of green leaves two times higher as compared to the years before pruning and the two other ginkgo trees which had been investigated in parallel. A comparable increase was also found for the level of total carotenoids (<i>x</i>+<i>c</i>). The mean content for Chl (<i>a</i>+<i>b</i>) were 1,118 mg m<sup>-2</sup> for dark-green and 898 mg m<sup>-2</sup> for green leaves as compared to 435 to 770 mg m<sup>-2</sup> in leaves of other trees. The higher values for Chl (<i>a</i>+<i>b</i>) and total carotenoid content showed up also on a fresh and dry mass basis. Thus, with the formation of a new, larger leaf type by changes in morphology (leaf size and thickness) and the increase of photosynthetic pigments, the pruned ginkgo tree was able to compensate for the much lower number of leaves and photosynthetic units.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"12 1","pages":"297-307"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strong increase of photosynthetic pigments and leaf size in a pruned <i>Ginkgo biloba</i> tree.\",\"authors\":\"H K Lichtenthaler, E Abuslima, P Nick\",\"doi\":\"10.32615/ps.2023.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A 50-year-old solitary, sun-exposed ginkgo tree had strongly been pruned in the fall of 2021. Very few buds for the formation of new leaves, twigs, and branches were left over. In spring 2022, these few remaining buds responded with the formation of a different leaf type. These leaves were 2.7 times larger and also thicker than in the years before. In addition, the mean content of total chlorophylls [Chl (<i>a</i>+<i>b</i>)] per leaf area unit of dark-green leaves was 1.45, those of green leaves two times higher as compared to the years before pruning and the two other ginkgo trees which had been investigated in parallel. A comparable increase was also found for the level of total carotenoids (<i>x</i>+<i>c</i>). The mean content for Chl (<i>a</i>+<i>b</i>) were 1,118 mg m<sup>-2</sup> for dark-green and 898 mg m<sup>-2</sup> for green leaves as compared to 435 to 770 mg m<sup>-2</sup> in leaves of other trees. The higher values for Chl (<i>a</i>+<i>b</i>) and total carotenoid content showed up also on a fresh and dry mass basis. Thus, with the formation of a new, larger leaf type by changes in morphology (leaf size and thickness) and the increase of photosynthetic pigments, the pruned ginkgo tree was able to compensate for the much lower number of leaves and photosynthetic units.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"12 1\",\"pages\":\"297-307\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2023.020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2023.020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Strong increase of photosynthetic pigments and leaf size in a pruned Ginkgo biloba tree.
A 50-year-old solitary, sun-exposed ginkgo tree had strongly been pruned in the fall of 2021. Very few buds for the formation of new leaves, twigs, and branches were left over. In spring 2022, these few remaining buds responded with the formation of a different leaf type. These leaves were 2.7 times larger and also thicker than in the years before. In addition, the mean content of total chlorophylls [Chl (a+b)] per leaf area unit of dark-green leaves was 1.45, those of green leaves two times higher as compared to the years before pruning and the two other ginkgo trees which had been investigated in parallel. A comparable increase was also found for the level of total carotenoids (x+c). The mean content for Chl (a+b) were 1,118 mg m-2 for dark-green and 898 mg m-2 for green leaves as compared to 435 to 770 mg m-2 in leaves of other trees. The higher values for Chl (a+b) and total carotenoid content showed up also on a fresh and dry mass basis. Thus, with the formation of a new, larger leaf type by changes in morphology (leaf size and thickness) and the increase of photosynthetic pigments, the pruned ginkgo tree was able to compensate for the much lower number of leaves and photosynthetic units.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.