基于人工免疫理论的网络入侵检测系统及其算法设计

Xiang-Rong Yang, Jun-Yi Shen, Rui Wang
{"title":"基于人工免疫理论的网络入侵检测系统及其算法设计","authors":"Xiang-Rong Yang, Jun-Yi Shen, Rui Wang","doi":"10.1109/ICMLC.2002.1176712","DOIUrl":null,"url":null,"abstract":"A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"26 1","pages":"73-77 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Artificial immune theory based network intrusion detection system and the algorithms design\",\"authors\":\"Xiang-Rong Yang, Jun-Yi Shen, Rui Wang\",\"doi\":\"10.1109/ICMLC.2002.1176712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"26 1\",\"pages\":\"73-77 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1176712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

提出了一种基于人工免疫理论的网络入侵检测模型。在该模型中,基于频繁的行为序列构建了自我模式和非自我模式,并提出了一种简单有效的模式编码算法。在编码结果的基础上,提出了一种将负选择与克隆选择相结合的检测器创建算法。对算法性能进行了分析,结果表明,该方法可以大大缩小每一代的规模,为模式进化创造了良好的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial immune theory based network intrusion detection system and the algorithms design
A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信