{"title":"有理数的紧化与小紧化空间","authors":"Ronnie Levy","doi":"10.1016/0016-660X(79)90030-8","DOIUrl":null,"url":null,"abstract":"<div><p>Conditions assuring that a compact space is a compactification of the rationals are given. Relations between the π-weight and strong density are discussed.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 1","pages":"Pages 87-91"},"PeriodicalIF":0.0000,"publicationDate":"1979-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90030-8","citationCount":"0","resultStr":"{\"title\":\"Compactifications of the rationals and small compact spaces\",\"authors\":\"Ronnie Levy\",\"doi\":\"10.1016/0016-660X(79)90030-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conditions assuring that a compact space is a compactification of the rationals are given. Relations between the π-weight and strong density are discussed.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"10 1\",\"pages\":\"Pages 87-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(79)90030-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X79900308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compactifications of the rationals and small compact spaces
Conditions assuring that a compact space is a compactification of the rationals are given. Relations between the π-weight and strong density are discussed.