热处理对重力铸造Cu-28Zn-2.5Al合金组织及形状记忆效应的影响

IF 1 Q4 ENGINEERING, MECHANICAL
A. Setyani, I. A. Setiawan, P. R. Pamungkas, N. Sofyan, B. T. Sofyan
{"title":"热处理对重力铸造Cu-28Zn-2.5Al合金组织及形状记忆效应的影响","authors":"A. Setyani, I. A. Setiawan, P. R. Pamungkas, N. Sofyan, B. T. Sofyan","doi":"10.15282/ijame.20.2.2023.07.0805","DOIUrl":null,"url":null,"abstract":"Cu-Zn-Al is one of the prospective shape memory alloys due to its promisingly good shape memory effect (SME), obtainable at a lower price through an easier fabrication process. Several hindrances that lower the SME of the Cu-Zn-Al can be improved by applying modified quenching methods and media. This study comprehensively studied the effects of quenching methods and media on Cu-28Zn- 2.5Al wt.% alloy. The alloy was fabricated by gravity casting and homogenized at 850 °C for 2 h. It was then betatized at 850 °C for 30 minutes and subsequently quenched using two different methods: direct quenching (DQ) and up quenching (UQ) with two different cooling media: water + dry ice (WD) and saltwater + dry ice (SD). Several characterizations to determine the material properties, such as morphology, structure, and hardness, were held, and additional semi-empirical bending tests were also conducted to determine the SME performance. The results showed that all quenched samples consisted of βʹ martensite [M18R] and retained α [A1] after quenching, regardless of the quenching method and cooling media. Upon analysis, the quenching with UQ method in SD media was found to be the most effective quenching process, as the method yields in an alloy with the highest SME performance. The pathway for achieving a high SME performance of Cu-Zn-Al alloy was thoroughly discussed in the article.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Heat Treatment on Microstructures and Shape Memory Effect of Cu-28Zn-2.5Al wt. % Produced by Gravity Casting\",\"authors\":\"A. Setyani, I. A. Setiawan, P. R. Pamungkas, N. Sofyan, B. T. Sofyan\",\"doi\":\"10.15282/ijame.20.2.2023.07.0805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu-Zn-Al is one of the prospective shape memory alloys due to its promisingly good shape memory effect (SME), obtainable at a lower price through an easier fabrication process. Several hindrances that lower the SME of the Cu-Zn-Al can be improved by applying modified quenching methods and media. This study comprehensively studied the effects of quenching methods and media on Cu-28Zn- 2.5Al wt.% alloy. The alloy was fabricated by gravity casting and homogenized at 850 °C for 2 h. It was then betatized at 850 °C for 30 minutes and subsequently quenched using two different methods: direct quenching (DQ) and up quenching (UQ) with two different cooling media: water + dry ice (WD) and saltwater + dry ice (SD). Several characterizations to determine the material properties, such as morphology, structure, and hardness, were held, and additional semi-empirical bending tests were also conducted to determine the SME performance. The results showed that all quenched samples consisted of βʹ martensite [M18R] and retained α [A1] after quenching, regardless of the quenching method and cooling media. Upon analysis, the quenching with UQ method in SD media was found to be the most effective quenching process, as the method yields in an alloy with the highest SME performance. The pathway for achieving a high SME performance of Cu-Zn-Al alloy was thoroughly discussed in the article.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.2.2023.07.0805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.07.0805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

Cu-Zn-Al合金具有良好的形状记忆效果,且制备工艺简单、价格低廉,是一种有发展前景的形状记忆合金。通过改进淬火方法和淬火介质,可以改善降低Cu-Zn-Al合金SME的几种障碍。本研究全面研究了淬火方式和淬火介质对Cu-28Zn- 2.5Al wt.%合金的影响。采用重力铸造法制备合金,850℃下均质2小时,850℃下保温30分钟,用水+干冰(WD)和盐水+干冰(SD)两种不同的冷却介质进行直接淬火(DQ)和上淬火(UQ)。进行了若干表征以确定材料性能,如形态、结构和硬度,并进行了额外的半经验弯曲测试以确定SME性能。结果表明,无论淬火方式和冷却介质如何,淬火后的样品均由β′马氏体[M18R]组成,并保留α [A1]。通过分析,发现在SD介质中使用UQ法淬火是最有效的淬火工艺,因为该方法产生的合金具有最高的SME性能。本文对Cu-Zn-Al合金实现高SME性能的途径进行了深入探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Heat Treatment on Microstructures and Shape Memory Effect of Cu-28Zn-2.5Al wt. % Produced by Gravity Casting
Cu-Zn-Al is one of the prospective shape memory alloys due to its promisingly good shape memory effect (SME), obtainable at a lower price through an easier fabrication process. Several hindrances that lower the SME of the Cu-Zn-Al can be improved by applying modified quenching methods and media. This study comprehensively studied the effects of quenching methods and media on Cu-28Zn- 2.5Al wt.% alloy. The alloy was fabricated by gravity casting and homogenized at 850 °C for 2 h. It was then betatized at 850 °C for 30 minutes and subsequently quenched using two different methods: direct quenching (DQ) and up quenching (UQ) with two different cooling media: water + dry ice (WD) and saltwater + dry ice (SD). Several characterizations to determine the material properties, such as morphology, structure, and hardness, were held, and additional semi-empirical bending tests were also conducted to determine the SME performance. The results showed that all quenched samples consisted of βʹ martensite [M18R] and retained α [A1] after quenching, regardless of the quenching method and cooling media. Upon analysis, the quenching with UQ method in SD media was found to be the most effective quenching process, as the method yields in an alloy with the highest SME performance. The pathway for achieving a high SME performance of Cu-Zn-Al alloy was thoroughly discussed in the article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信