{"title":"在琼斯模多项式上","authors":"G. Pagel","doi":"10.5802/crmath.106","DOIUrl":null,"url":null,"abstract":"A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\\geq 1$. In particular, for any $k\\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the modular Jones polynomial\",\"authors\":\"G. Pagel\",\"doi\":\"10.5802/crmath.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\\\\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\\\\geq 1$. In particular, for any $k\\\\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\geq 1$. In particular, for any $k\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.