在琼斯模多项式上

G. Pagel
{"title":"在琼斯模多项式上","authors":"G. Pagel","doi":"10.5802/crmath.106","DOIUrl":null,"url":null,"abstract":"A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\\geq 1$. In particular, for any $k\\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the modular Jones polynomial\",\"authors\":\"G. Pagel\",\"doi\":\"10.5802/crmath.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\\\\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\\\\geq 1$. In particular, for any $k\\\\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结理论中的一个主要问题是确定琼斯多项式是否检测到解结。本文研究了一个较弱的相关问题,即琼斯多项式对整数的约模$n$是否检测到解结。已知对于$n=2^k$、$k\geq 1$和$n=3$,答案是否定的。这里我们表明,如果对于某个$n$的答案是负的,那么对于任何$k\geq 1$的$n^k$的答案都是负的。特别地,对于任意$k\geq 1$,我们构造其琼斯多项式为平凡模$3^k$的非平凡结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the modular Jones polynomial
A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\geq 1$. In particular, for any $k\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信