300mw发电机组超超临界参数28mpa /600°С/600°С尘煤蒸汽发生器设计过程中概念性技术方案的制定及其实施方法。第1部分。

B. Rokhman, N. Dunaevska, V. Vifatnyuk
{"title":"300mw发电机组超超临界参数28mpa /600°С/600°С尘煤蒸汽发生器设计过程中概念性技术方案的制定及其实施方法。第1部分。","authors":"B. Rokhman, N. Dunaevska, V. Vifatnyuk","doi":"10.33070/etars.4.2020.01","DOIUrl":null,"url":null,"abstract":"Increasing efficiency of power plant unit, reducing fuel costs, and CO2, NOx and SOx emissions can be achieved by increasing the pressure and temperature of the steam. Analysis carried out for boilers designed for supercritical steam parameters, showed that the increase in pressure and temperature is directly related to the stresses arising in the metal of the superheater, and, consequently, with the need of using high-temperature alloys. Thus, steam generators can be conventionally divided into three groups: supercritical (SC), super supercritical (SSC) and ultra supercritical (USC). The efficiency of the power units of the USC is 3–4 % higher than the efficiency of the SC units, and the efficiency of the power units of the USC is 6–8 % higher than the efficiency of the SC units. For the manufacture of USC boilers, steels based on nickel alloys are required, which are mainly at the stage of development and testing, while for the production of SSC steam generator, steels are manufactured on an industrial scale, therefore, currently, the best option is the construction of SSC power unites. The first part of the work describes the calculation method, the algorithm and the program with the help of which the design and verification thermal calculations of the SSC 28 MPa/600 °С/600 °С were carried out for a 300 MW power unit at rated loads. Two designs of vortex burners (coiled-blade and blade-blade) with a thermal power of 34.471 MJ/s and productivity (for coal) of 5902 kg/h have been developed. Original technical solutions have been developed to improve the reliability of the live steam output stage and to reduce the surface of the first stage of the reheater. Bibl. 5, Fig. 4, Tab. 1.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DEVELOPMENT OF CONCEPTUAL TECHNICAL SOLUTIONS AND METHODS OF THEIR IMPLEMENTATION DURING THE DESIGN OF A DUST COAL STEAM GENERATOR OF SUPER-SUPER CRITICAL PARAMETERS OF STEAM 28 MPA/600 °С/600 °С FOR 300 MW ENERGY UNIT. PART 1.\",\"authors\":\"B. Rokhman, N. Dunaevska, V. Vifatnyuk\",\"doi\":\"10.33070/etars.4.2020.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing efficiency of power plant unit, reducing fuel costs, and CO2, NOx and SOx emissions can be achieved by increasing the pressure and temperature of the steam. Analysis carried out for boilers designed for supercritical steam parameters, showed that the increase in pressure and temperature is directly related to the stresses arising in the metal of the superheater, and, consequently, with the need of using high-temperature alloys. Thus, steam generators can be conventionally divided into three groups: supercritical (SC), super supercritical (SSC) and ultra supercritical (USC). The efficiency of the power units of the USC is 3–4 % higher than the efficiency of the SC units, and the efficiency of the power units of the USC is 6–8 % higher than the efficiency of the SC units. For the manufacture of USC boilers, steels based on nickel alloys are required, which are mainly at the stage of development and testing, while for the production of SSC steam generator, steels are manufactured on an industrial scale, therefore, currently, the best option is the construction of SSC power unites. The first part of the work describes the calculation method, the algorithm and the program with the help of which the design and verification thermal calculations of the SSC 28 MPa/600 °С/600 °С were carried out for a 300 MW power unit at rated loads. Two designs of vortex burners (coiled-blade and blade-blade) with a thermal power of 34.471 MJ/s and productivity (for coal) of 5902 kg/h have been developed. Original technical solutions have been developed to improve the reliability of the live steam output stage and to reduce the surface of the first stage of the reheater. Bibl. 5, Fig. 4, Tab. 1.\",\"PeriodicalId\":11558,\"journal\":{\"name\":\"Energy Technologies & Resource Saving\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Technologies & Resource Saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33070/etars.4.2020.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Technologies & Resource Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33070/etars.4.2020.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过提高蒸汽的压力和温度,可以提高电厂机组的效率,降低燃料成本,减少CO2、NOx和SOx的排放。对设计用于超临界蒸汽参数的锅炉进行的分析表明,压力和温度的升高与过热器金属中产生的应力直接相关,因此需要使用高温合金。因此,蒸汽发生器通常可以分为三组:超临界(SC)、超超临界(SSC)和超超临界(USC)。USC功率单元的效率比SC单元的效率高3 - 4%,USC功率单元的效率比SC单元的效率高6 - 8%。对于USC锅炉的制造,需要基于镍合金的钢材,这主要是在开发和测试阶段,而对于SSC蒸汽发生器的生产,钢材是工业化生产的,因此,目前最好的选择是建造SSC动力机组。第一部分介绍了计算方法、算法和程序,并在此基础上进行了300mw机组额定负荷下SSC 28 MPa/600°С/600°С的设计和验证热计算。研制了两种旋涡燃烧器(旋涡-叶片和旋涡-叶片),其热功率为34.471 MJ/s,生产力(煤)为5902 kg/h。为了提高活汽输出级的可靠性和减少再热器第一级的表面,已经制定了原始的技术解决方案。圣经5,图4,表1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEVELOPMENT OF CONCEPTUAL TECHNICAL SOLUTIONS AND METHODS OF THEIR IMPLEMENTATION DURING THE DESIGN OF A DUST COAL STEAM GENERATOR OF SUPER-SUPER CRITICAL PARAMETERS OF STEAM 28 MPA/600 °С/600 °С FOR 300 MW ENERGY UNIT. PART 1.
Increasing efficiency of power plant unit, reducing fuel costs, and CO2, NOx and SOx emissions can be achieved by increasing the pressure and temperature of the steam. Analysis carried out for boilers designed for supercritical steam parameters, showed that the increase in pressure and temperature is directly related to the stresses arising in the metal of the superheater, and, consequently, with the need of using high-temperature alloys. Thus, steam generators can be conventionally divided into three groups: supercritical (SC), super supercritical (SSC) and ultra supercritical (USC). The efficiency of the power units of the USC is 3–4 % higher than the efficiency of the SC units, and the efficiency of the power units of the USC is 6–8 % higher than the efficiency of the SC units. For the manufacture of USC boilers, steels based on nickel alloys are required, which are mainly at the stage of development and testing, while for the production of SSC steam generator, steels are manufactured on an industrial scale, therefore, currently, the best option is the construction of SSC power unites. The first part of the work describes the calculation method, the algorithm and the program with the help of which the design and verification thermal calculations of the SSC 28 MPa/600 °С/600 °С were carried out for a 300 MW power unit at rated loads. Two designs of vortex burners (coiled-blade and blade-blade) with a thermal power of 34.471 MJ/s and productivity (for coal) of 5902 kg/h have been developed. Original technical solutions have been developed to improve the reliability of the live steam output stage and to reduce the surface of the first stage of the reheater. Bibl. 5, Fig. 4, Tab. 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信