{"title":"不同热变化试验对生物复合材料微拉伸强度行为的影响体外研究","authors":"E. Yilmaz, R. Sadeler","doi":"10.4103/bmrj.bmrj_6_21","DOIUrl":null,"url":null,"abstract":"Background: The thermal changes in environments that composite materials are exposed to has a great effect on fatigue and wear behavior. Aim: Micro-cracks and interfacial deformations occur in the composite material structure because of heating and cooling environments occurring on material surfaces. Considering the environment to which bio-composite materials used in the human body are exposed, it is inevitable that they are exposed to a thermal change cycle environment. Material and Method: In this study, the mechanical behaviors of Silorane, X-Trafil and Valux-Plus bio-composite materials were examined after being exposed to thermal cycles in an artificial mouth environment in the temperature range of minimum 5 °C and maximum 65 °C. Micro-tensile strengths of bio-composite materials after thermal cycle test procedures were determined using a universal micro tensile tester device. In addition, microstructural analyzes of bio-composite materials were evaluated using scanning electron microscopy (SEM). Results: Within the scope of the data obtained as a result of this study, it was concluded that the thermal changes in environments significantly affects the micro-shrinkage behavior of bio-composite materials. Conclusion: The behavior of the matrix structure of the composite material significantly affected the formation of micro cracks.","PeriodicalId":34293,"journal":{"name":"Biomedical Research Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of different thermal change tests of micro tensile strength behavior bio-composite materials; In vitro study\",\"authors\":\"E. Yilmaz, R. Sadeler\",\"doi\":\"10.4103/bmrj.bmrj_6_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The thermal changes in environments that composite materials are exposed to has a great effect on fatigue and wear behavior. Aim: Micro-cracks and interfacial deformations occur in the composite material structure because of heating and cooling environments occurring on material surfaces. Considering the environment to which bio-composite materials used in the human body are exposed, it is inevitable that they are exposed to a thermal change cycle environment. Material and Method: In this study, the mechanical behaviors of Silorane, X-Trafil and Valux-Plus bio-composite materials were examined after being exposed to thermal cycles in an artificial mouth environment in the temperature range of minimum 5 °C and maximum 65 °C. Micro-tensile strengths of bio-composite materials after thermal cycle test procedures were determined using a universal micro tensile tester device. In addition, microstructural analyzes of bio-composite materials were evaluated using scanning electron microscopy (SEM). Results: Within the scope of the data obtained as a result of this study, it was concluded that the thermal changes in environments significantly affects the micro-shrinkage behavior of bio-composite materials. Conclusion: The behavior of the matrix structure of the composite material significantly affected the formation of micro cracks.\",\"PeriodicalId\":34293,\"journal\":{\"name\":\"Biomedical Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/bmrj.bmrj_6_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/bmrj.bmrj_6_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of different thermal change tests of micro tensile strength behavior bio-composite materials; In vitro study
Background: The thermal changes in environments that composite materials are exposed to has a great effect on fatigue and wear behavior. Aim: Micro-cracks and interfacial deformations occur in the composite material structure because of heating and cooling environments occurring on material surfaces. Considering the environment to which bio-composite materials used in the human body are exposed, it is inevitable that they are exposed to a thermal change cycle environment. Material and Method: In this study, the mechanical behaviors of Silorane, X-Trafil and Valux-Plus bio-composite materials were examined after being exposed to thermal cycles in an artificial mouth environment in the temperature range of minimum 5 °C and maximum 65 °C. Micro-tensile strengths of bio-composite materials after thermal cycle test procedures were determined using a universal micro tensile tester device. In addition, microstructural analyzes of bio-composite materials were evaluated using scanning electron microscopy (SEM). Results: Within the scope of the data obtained as a result of this study, it was concluded that the thermal changes in environments significantly affects the micro-shrinkage behavior of bio-composite materials. Conclusion: The behavior of the matrix structure of the composite material significantly affected the formation of micro cracks.