R. Maimon, O. Lahav, Y. Gerson, O. Zohar, H. Berko, S. Krylov
{"title":"战术级微型陀螺仪,具有双俘获/光学传感","authors":"R. Maimon, O. Lahav, Y. Gerson, O. Zohar, H. Berko, S. Krylov","doi":"10.1109/MEMSYS.2013.6474322","DOIUrl":null,"url":null,"abstract":"This paper introduces a design, fabrication, integration and characterization, of a novel high-grade single axis tuning fork gyroscope (TFG), based on dual detection techniques - capacitive and optic (DDT-CO). This is the first time that the capacitive and optical sensing approaches are used, for the registering of the in-plane drive and in-plane sense mode responses. The two techniques are combined in the same fully functional vacuum packaged device with integrated electronics. We present the results of the rate-table performance study, and the sensor's main figures of merit. We show that the use of dual sensing significantly simplifies the silicon on insulator (SOI) fabrication process, allowing the achievement of tactical grade performance, including angular random walk (ARW) less than 0.15 °/√hr and in-run bias instability (BI) less than 2 °/hr.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"1 1","pages":"637-640"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tactical grade micro gyroscope with dual capcitive/optical sensing\",\"authors\":\"R. Maimon, O. Lahav, Y. Gerson, O. Zohar, H. Berko, S. Krylov\",\"doi\":\"10.1109/MEMSYS.2013.6474322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a design, fabrication, integration and characterization, of a novel high-grade single axis tuning fork gyroscope (TFG), based on dual detection techniques - capacitive and optic (DDT-CO). This is the first time that the capacitive and optical sensing approaches are used, for the registering of the in-plane drive and in-plane sense mode responses. The two techniques are combined in the same fully functional vacuum packaged device with integrated electronics. We present the results of the rate-table performance study, and the sensor's main figures of merit. We show that the use of dual sensing significantly simplifies the silicon on insulator (SOI) fabrication process, allowing the achievement of tactical grade performance, including angular random walk (ARW) less than 0.15 °/√hr and in-run bias instability (BI) less than 2 °/hr.\",\"PeriodicalId\":92162,\"journal\":{\"name\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"volume\":\"1 1\",\"pages\":\"637-640\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2013.6474322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tactical grade micro gyroscope with dual capcitive/optical sensing
This paper introduces a design, fabrication, integration and characterization, of a novel high-grade single axis tuning fork gyroscope (TFG), based on dual detection techniques - capacitive and optic (DDT-CO). This is the first time that the capacitive and optical sensing approaches are used, for the registering of the in-plane drive and in-plane sense mode responses. The two techniques are combined in the same fully functional vacuum packaged device with integrated electronics. We present the results of the rate-table performance study, and the sensor's main figures of merit. We show that the use of dual sensing significantly simplifies the silicon on insulator (SOI) fabrication process, allowing the achievement of tactical grade performance, including angular random walk (ARW) less than 0.15 °/√hr and in-run bias instability (BI) less than 2 °/hr.