伪黎曼广义对称空间上的Ricci孤子

Amel Bouharis
{"title":"伪黎曼广义对称空间上的Ricci孤子","authors":"Amel Bouharis","doi":"10.31926/but.mif.2022.2.64.2.4","DOIUrl":null,"url":null,"abstract":"We study the geometry of four-dimensional pseudo Riemannian generalized symmetric spaces of type D; whose metric was explicitly described by Cerny and Kowalski. After describing their curvature properties; we classify the Killing vectors field of these spaces and more particularly, we study the existence of non-trivial (i.e., not Einstein) Ricci solitons; we show that these spaces are shrinking or expanding Ricci solitons but never steady. Moreover this Ricci soliton is not a gradient one.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ricci solitons on pseudo Riemannian generalized symmetric spaces\",\"authors\":\"Amel Bouharis\",\"doi\":\"10.31926/but.mif.2022.2.64.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the geometry of four-dimensional pseudo Riemannian generalized symmetric spaces of type D; whose metric was explicitly described by Cerny and Kowalski. After describing their curvature properties; we classify the Killing vectors field of these spaces and more particularly, we study the existence of non-trivial (i.e., not Einstein) Ricci solitons; we show that these spaces are shrinking or expanding Ricci solitons but never steady. Moreover this Ricci soliton is not a gradient one.\",\"PeriodicalId\":53266,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2022.2.64.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2022.2.64.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了D型四维伪黎曼广义对称空间的几何性质;其度量由Cerny和Kowalski明确描述。在描述了它们的曲率特性之后;我们对这些空间的杀戮向量场进行了分类,更具体地说,我们研究了非平凡(即非爱因斯坦)里奇孤子的存在性;我们证明了这些空间是收缩或膨胀的里奇孤子,但从不稳定。而且这个里奇孤子不是梯度孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ricci solitons on pseudo Riemannian generalized symmetric spaces
We study the geometry of four-dimensional pseudo Riemannian generalized symmetric spaces of type D; whose metric was explicitly described by Cerny and Kowalski. After describing their curvature properties; we classify the Killing vectors field of these spaces and more particularly, we study the existence of non-trivial (i.e., not Einstein) Ricci solitons; we show that these spaces are shrinking or expanding Ricci solitons but never steady. Moreover this Ricci soliton is not a gradient one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信