加纳将塑料废物回收为替代燃料,以实现循环经济

Samuel Kofi Tulashie , Daniel Dodoo , Stephen Mensah , Sandra Atisey , Raphael Odai , Kingsley Enoch Adukpoh , Enoch Kofi Boadu
{"title":"加纳将塑料废物回收为替代燃料,以实现循环经济","authors":"Samuel Kofi Tulashie ,&nbsp;Daniel Dodoo ,&nbsp;Stephen Mensah ,&nbsp;Sandra Atisey ,&nbsp;Raphael Odai ,&nbsp;Kingsley Enoch Adukpoh ,&nbsp;Enoch Kofi Boadu","doi":"10.1016/j.clce.2022.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional methods of disposing and storing plastic waste in Ghana, such as at damping sites and landfills, have put the environment and human life at risk for years. A sustainable and efficient solution is to shift to a circular economy by recycling plastic waste into alternative fuels. Therefore, this study focussed on the segregation of plastic waste and its conversion into fuel products via pyrolysis in the temperature range of 350 – 420 °C. In a kilogram-scale pyrolysis fixed-bed batch reactor, a large quantity of condensate oil was produced with minimal amounts of non-condensable gases, chars, and waxes. Gas chromatography, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis were used to characterise the condensate oils. The measured fuel properties of the various condensate oil types were remarkedly similar to those of commercial fuels (gasoline, diesel, and kerosene). This makes them suitable alternatives to conventional energy sources, with the potential to significantly improve living conditions, reduce environmental pollution, and cut down on the need to import refined fossil fuel. Finally, the condensate oil from the individual plastic waste types outperformed the mixed-plastic waste in terms of fuel properties and yield.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000626/pdfft?md5=46f5d4bb32f9654f1004e1a1337b0ba8&pid=1-s2.0-S2772782322000626-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Recycling of plastic wastes into alternative fuels towards a circular economy in Ghana\",\"authors\":\"Samuel Kofi Tulashie ,&nbsp;Daniel Dodoo ,&nbsp;Stephen Mensah ,&nbsp;Sandra Atisey ,&nbsp;Raphael Odai ,&nbsp;Kingsley Enoch Adukpoh ,&nbsp;Enoch Kofi Boadu\",\"doi\":\"10.1016/j.clce.2022.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional methods of disposing and storing plastic waste in Ghana, such as at damping sites and landfills, have put the environment and human life at risk for years. A sustainable and efficient solution is to shift to a circular economy by recycling plastic waste into alternative fuels. Therefore, this study focussed on the segregation of plastic waste and its conversion into fuel products via pyrolysis in the temperature range of 350 – 420 °C. In a kilogram-scale pyrolysis fixed-bed batch reactor, a large quantity of condensate oil was produced with minimal amounts of non-condensable gases, chars, and waxes. Gas chromatography, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis were used to characterise the condensate oils. The measured fuel properties of the various condensate oil types were remarkedly similar to those of commercial fuels (gasoline, diesel, and kerosene). This makes them suitable alternatives to conventional energy sources, with the potential to significantly improve living conditions, reduce environmental pollution, and cut down on the need to import refined fossil fuel. Finally, the condensate oil from the individual plastic waste types outperformed the mixed-plastic waste in terms of fuel properties and yield.</p></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"4 \",\"pages\":\"Article 100064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772782322000626/pdfft?md5=46f5d4bb32f9654f1004e1a1337b0ba8&pid=1-s2.0-S2772782322000626-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782322000626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782322000626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在加纳,处理和储存塑料废物的传统方法,例如在阻尼点和垃圾填埋场,多年来一直使环境和人类生命处于危险之中。一个可持续和有效的解决方案是通过将塑料废物回收为替代燃料来转向循环经济。因此,本研究的重点是在350 - 420℃的温度范围内对塑料废弃物进行分离并热解转化为燃料产品。在千克级热解固定床间歇式反应器中,以极少量的不凝性气体、焦炭和蜡生成了大量的凝析油。采用气相色谱法、傅里叶变换红外光谱法、差示扫描量热法和热重分析法对凝析油进行表征。测量的各种凝析油类型的燃料特性与商业燃料(汽油、柴油和煤油)非常相似。这使它们成为传统能源的合适替代品,具有显著改善生活条件、减少环境污染和减少进口精炼化石燃料需求的潜力。最后,从单个塑料废物中提取的凝析油在燃料性能和产量方面优于混合塑料废物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recycling of plastic wastes into alternative fuels towards a circular economy in Ghana

Recycling of plastic wastes into alternative fuels towards a circular economy in Ghana

Traditional methods of disposing and storing plastic waste in Ghana, such as at damping sites and landfills, have put the environment and human life at risk for years. A sustainable and efficient solution is to shift to a circular economy by recycling plastic waste into alternative fuels. Therefore, this study focussed on the segregation of plastic waste and its conversion into fuel products via pyrolysis in the temperature range of 350 – 420 °C. In a kilogram-scale pyrolysis fixed-bed batch reactor, a large quantity of condensate oil was produced with minimal amounts of non-condensable gases, chars, and waxes. Gas chromatography, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis were used to characterise the condensate oils. The measured fuel properties of the various condensate oil types were remarkedly similar to those of commercial fuels (gasoline, diesel, and kerosene). This makes them suitable alternatives to conventional energy sources, with the potential to significantly improve living conditions, reduce environmental pollution, and cut down on the need to import refined fossil fuel. Finally, the condensate oil from the individual plastic waste types outperformed the mixed-plastic waste in terms of fuel properties and yield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信