Li-Chih Liu, Jen‐Sue Chen, J. Jeng
{"title":"无钝化超薄锌锡氧化物薄膜晶体管的环境常数","authors":"Li-Chih Liu, Jen‐Sue Chen, J. Jeng","doi":"10.1149/2.0051512SSL","DOIUrl":null,"url":null,"abstract":"An ultra-thin (5 nm-thick), unpassivated zinc tin oxide (ZTO) thin-film transistor TFT, fabricated with solution process, exhibits a good field-effect mobility (13 ∼ 14 cm2/Vs), small subthreshold swing (∼0.30 V/dec.) and high on/off current ratio (∼108). The field-effect mobility can be further enhanced by increasing the ZTO thickness to 12 nm and 22 nm. Furthermore, ID-VG characteristics of the 5 nm-thick ZTO TFT remain unaffected, regardless of working in air (60% relative humidity), vacuum or dry O2 atmosphere. The dissimilar TFT characteristics are discussed in terms of oxygen deficiency content, as well as the Fermi level position (EF to EC) for ZTO of various thicknesses to explain the moisture immunity of the 5 nm-thick solution-processed ZTO TFT. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0051512ssl] All rights reserved.","PeriodicalId":11423,"journal":{"name":"ECS Solid State Letters","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Ambient Constancy of Passivation-Free Ultra-Thin Zinc Tin Oxide Thin Film Transistor\",\"authors\":\"Li-Chih Liu, Jen‐Sue Chen, J. Jeng\",\"doi\":\"10.1149/2.0051512SSL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultra-thin (5 nm-thick), unpassivated zinc tin oxide (ZTO) thin-film transistor TFT, fabricated with solution process, exhibits a good field-effect mobility (13 ∼ 14 cm2/Vs), small subthreshold swing (∼0.30 V/dec.) and high on/off current ratio (∼108). The field-effect mobility can be further enhanced by increasing the ZTO thickness to 12 nm and 22 nm. Furthermore, ID-VG characteristics of the 5 nm-thick ZTO TFT remain unaffected, regardless of working in air (60% relative humidity), vacuum or dry O2 atmosphere. The dissimilar TFT characteristics are discussed in terms of oxygen deficiency content, as well as the Fermi level position (EF to EC) for ZTO of various thicknesses to explain the moisture immunity of the 5 nm-thick solution-processed ZTO TFT. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0051512ssl] All rights reserved.\",\"PeriodicalId\":11423,\"journal\":{\"name\":\"ECS Solid State Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Solid State Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0051512SSL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0051512SSL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Ambient Constancy of Passivation-Free Ultra-Thin Zinc Tin Oxide Thin Film Transistor
An ultra-thin (5 nm-thick), unpassivated zinc tin oxide (ZTO) thin-film transistor TFT, fabricated with solution process, exhibits a good field-effect mobility (13 ∼ 14 cm2/Vs), small subthreshold swing (∼0.30 V/dec.) and high on/off current ratio (∼108). The field-effect mobility can be further enhanced by increasing the ZTO thickness to 12 nm and 22 nm. Furthermore, ID-VG characteristics of the 5 nm-thick ZTO TFT remain unaffected, regardless of working in air (60% relative humidity), vacuum or dry O2 atmosphere. The dissimilar TFT characteristics are discussed in terms of oxygen deficiency content, as well as the Fermi level position (EF to EC) for ZTO of various thicknesses to explain the moisture immunity of the 5 nm-thick solution-processed ZTO TFT. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0051512ssl] All rights reserved.