具有扩散约束的BSDEs和具有无界数据的粘性Hamilton-Jacobi方程

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Andrea Cosso, H. Pham, Hao Xing
{"title":"具有扩散约束的BSDEs和具有无界数据的粘性Hamilton-Jacobi方程","authors":"Andrea Cosso, H. Pham, Hao Xing","doi":"10.1214/16-AIHP762","DOIUrl":null,"url":null,"abstract":"We provide a stochastic representation for a general class of viscous Hamilton-Jacobi (HJ) equations, which has convexity and superlinear nonlinearity in its gradient term, via a type of backward stochastic differential equation (BSDE) with constraint in the martingale part. We compare our result with the classical representation in terms of (super)quadratic BSDE, and show in particular that existence of a solution to the viscous HJ equation can be obtained under more general growth assumptions on the coefficients, including both unbounded diffusion coefficient and terminal data.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"8 1","pages":"1528-1547"},"PeriodicalIF":1.2000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"BSDEs with diffusion constraint and viscous Hamilton–Jacobi equations with unbounded data\",\"authors\":\"Andrea Cosso, H. Pham, Hao Xing\",\"doi\":\"10.1214/16-AIHP762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a stochastic representation for a general class of viscous Hamilton-Jacobi (HJ) equations, which has convexity and superlinear nonlinearity in its gradient term, via a type of backward stochastic differential equation (BSDE) with constraint in the martingale part. We compare our result with the classical representation in terms of (super)quadratic BSDE, and show in particular that existence of a solution to the viscous HJ equation can be obtained under more general growth assumptions on the coefficients, including both unbounded diffusion coefficient and terminal data.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"8 1\",\"pages\":\"1528-1547\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AIHP762\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP762","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

通过一类在鞅部分有约束的倒向随机微分方程,给出了一类梯度项具有凸性和超线性非线性的粘性Hamilton-Jacobi (HJ)方程的随机表示。我们将结果与经典的(超)二次BSDE表示形式进行了比较,并特别证明了在更一般的系数增长假设下,粘性HJ方程的解的存在性,包括无界扩散系数和终端数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BSDEs with diffusion constraint and viscous Hamilton–Jacobi equations with unbounded data
We provide a stochastic representation for a general class of viscous Hamilton-Jacobi (HJ) equations, which has convexity and superlinear nonlinearity in its gradient term, via a type of backward stochastic differential equation (BSDE) with constraint in the martingale part. We compare our result with the classical representation in terms of (super)quadratic BSDE, and show in particular that existence of a solution to the viscous HJ equation can be obtained under more general growth assumptions on the coefficients, including both unbounded diffusion coefficient and terminal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信