{"title":"具有跃变的扩散模型中漂移系数的偏置减少估计","authors":"Yuping Song, Hangyan Li","doi":"10.1080/02331888.2023.2201504","DOIUrl":null,"url":null,"abstract":"In this paper, we reconstruct the local linear threshold estimator for the drift coefficient of a semimartingale with jumps. Under mild conditions, we provide the asymptotic normality of our estimator in the presence of finite activity jumps whether the underlying process is Harris recurrent or positive recurrent. Simulation studies for different models show that our estimator performs better than previous research in finite samples, which can correct the boundary bias automatically. Finally, the estimator is illustrated empirically through the stock index from Shanghai Stock Exchange in China under 15-minute high sampling frequency.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"19 1","pages":"597 - 616"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias reduction estimation for drift coefficient in diffusion models with jumps\",\"authors\":\"Yuping Song, Hangyan Li\",\"doi\":\"10.1080/02331888.2023.2201504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we reconstruct the local linear threshold estimator for the drift coefficient of a semimartingale with jumps. Under mild conditions, we provide the asymptotic normality of our estimator in the presence of finite activity jumps whether the underlying process is Harris recurrent or positive recurrent. Simulation studies for different models show that our estimator performs better than previous research in finite samples, which can correct the boundary bias automatically. Finally, the estimator is illustrated empirically through the stock index from Shanghai Stock Exchange in China under 15-minute high sampling frequency.\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"19 1\",\"pages\":\"597 - 616\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2023.2201504\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2201504","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bias reduction estimation for drift coefficient in diffusion models with jumps
In this paper, we reconstruct the local linear threshold estimator for the drift coefficient of a semimartingale with jumps. Under mild conditions, we provide the asymptotic normality of our estimator in the presence of finite activity jumps whether the underlying process is Harris recurrent or positive recurrent. Simulation studies for different models show that our estimator performs better than previous research in finite samples, which can correct the boundary bias automatically. Finally, the estimator is illustrated empirically through the stock index from Shanghai Stock Exchange in China under 15-minute high sampling frequency.
期刊介绍:
Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.