采用间隙相关频移的精密谐振梁应变传感器

A. Ozgurluk, C. Nguyen
{"title":"采用间隙相关频移的精密谐振梁应变传感器","authors":"A. Ozgurluk, C. Nguyen","doi":"10.1109/IFCS-ISAF41089.2020.9234911","DOIUrl":null,"url":null,"abstract":"A micromechanical structure for on-chip strain sensing maps strain-induced gap changes to resonance frequency shifts while employing differential strategies to null out bias uncertainty, all towards repeatable measurement of sub-nm displacement changes that equate to sub-$-\\mu\\varepsilon$ strain increments. The key enabler here is the use of gap-dependent electrical stiffness to shift resonance frequencies as structural elements stretch or shrink to relieve stress. An output based on the difference frequency between two close proximity structures with unequal stress arm lengths (cf. Fig. 1) removes uncertainty on the initial gap spacing and permits a $206\\ \\text{Hz}/\\mu\\varepsilon$ scale factor. The ability to precisely measure the frequency of the high-$Q$ (∼4000) structures, down to at least 1 Hz, puts the resolution of this sensor at least $5\\mathrm{n}\\varepsilon$ (or 790 Pa for polysilicon). An on-chip highly sensitive strain sensing device like this will likely be instrumental to managing stress changes over the lifetime of micromechanical circuits, such as oscillators and filters.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"195 2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Precision Resonant Beam Strain Sensor Employing Gap-Dependent Frequency Shift\",\"authors\":\"A. Ozgurluk, C. Nguyen\",\"doi\":\"10.1109/IFCS-ISAF41089.2020.9234911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A micromechanical structure for on-chip strain sensing maps strain-induced gap changes to resonance frequency shifts while employing differential strategies to null out bias uncertainty, all towards repeatable measurement of sub-nm displacement changes that equate to sub-$-\\\\mu\\\\varepsilon$ strain increments. The key enabler here is the use of gap-dependent electrical stiffness to shift resonance frequencies as structural elements stretch or shrink to relieve stress. An output based on the difference frequency between two close proximity structures with unequal stress arm lengths (cf. Fig. 1) removes uncertainty on the initial gap spacing and permits a $206\\\\ \\\\text{Hz}/\\\\mu\\\\varepsilon$ scale factor. The ability to precisely measure the frequency of the high-$Q$ (∼4000) structures, down to at least 1 Hz, puts the resolution of this sensor at least $5\\\\mathrm{n}\\\\varepsilon$ (or 790 Pa for polysilicon). An on-chip highly sensitive strain sensing device like this will likely be instrumental to managing stress changes over the lifetime of micromechanical circuits, such as oscillators and filters.\",\"PeriodicalId\":6872,\"journal\":{\"name\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"volume\":\"195 2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

片上应变传感的微机械结构将应变引起的间隙变化映射为谐振频移,同时采用差分策略消除偏置不确定性,所有这些都是为了可重复测量亚纳米位移变化,相当于亚$-\mu\varepsilon$应变增量。这里的关键促成因素是使用与间隙相关的电刚度来改变谐振频率,因为结构元件拉伸或收缩以减轻应力。基于应力臂长度不等的两个相邻结构之间差频的输出(参见图1)消除了初始间隙间距的不确定性,并允许$206\ \text{Hz}/\mu\varepsilon$比例因子。精确测量高$Q$(~ 4000)结构频率的能力,降低到至少1hz,使该传感器的分辨率至少$5\mathrm{n}\varepsilon$(或多晶硅790 Pa)。像这样的片上高灵敏度应变传感装置可能有助于管理微机械电路(如振荡器和滤波器)在使用寿命期间的应力变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precision Resonant Beam Strain Sensor Employing Gap-Dependent Frequency Shift
A micromechanical structure for on-chip strain sensing maps strain-induced gap changes to resonance frequency shifts while employing differential strategies to null out bias uncertainty, all towards repeatable measurement of sub-nm displacement changes that equate to sub-$-\mu\varepsilon$ strain increments. The key enabler here is the use of gap-dependent electrical stiffness to shift resonance frequencies as structural elements stretch or shrink to relieve stress. An output based on the difference frequency between two close proximity structures with unequal stress arm lengths (cf. Fig. 1) removes uncertainty on the initial gap spacing and permits a $206\ \text{Hz}/\mu\varepsilon$ scale factor. The ability to precisely measure the frequency of the high-$Q$ (∼4000) structures, down to at least 1 Hz, puts the resolution of this sensor at least $5\mathrm{n}\varepsilon$ (or 790 Pa for polysilicon). An on-chip highly sensitive strain sensing device like this will likely be instrumental to managing stress changes over the lifetime of micromechanical circuits, such as oscillators and filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信