粉末床熔合过程变形预测的形状描述符评估

IF 1 Q4 ENGINEERING, MANUFACTURING
Hemnath Anandan Kumar, S. Kumaraguru
{"title":"粉末床熔合过程变形预测的形状描述符评估","authors":"Hemnath Anandan Kumar, S. Kumaraguru","doi":"10.1115/msec2022-86089","DOIUrl":null,"url":null,"abstract":"\n Metal additive manufacturing paves the way for industries to create new applications through unique design capabilities. The powder bed fusion process is one among many metal additive manufacturing technologies that are commercially successful. Despite its numerous advantages and application in various fields, defects may occur during processing, which causes premature failure of components. Distortion is one of the major defects, and it depends on process settings, geometry, and orientation related. These distortions and dimensional deviations should be predicted faster for part qualification for many industrial applications. This work attempts to predict distortions based on shape descriptors to address this issue. Shape descriptors are definitions used to identify the details of the shape of a model to be printed. It can be either two dimensional or three dimensional. In this work, 2D shape descriptors are selected for analysis. These 2D shape descriptors can help identify how the design features significantly affect the part distortion in the PBF process. In this work, a few 2D shape descriptors are defined and modelled as a design feature to achieve the objective. Then the respective models are subjected to distortion analysis. The relationship between shape descriptors and distortion are studied through inherent strain method based simulation of distortion. It is observed from the results that most shape descriptors defined in this work can be used to predict the distortion. This work serves as a base and can help create knowledge for proposing design guidelines for the metal powder bed fusion process and helps in redesigning to prevent distortions.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"281 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Shape Descriptors for Distortion Prediction in Powder Bed Fusion Process\",\"authors\":\"Hemnath Anandan Kumar, S. Kumaraguru\",\"doi\":\"10.1115/msec2022-86089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metal additive manufacturing paves the way for industries to create new applications through unique design capabilities. The powder bed fusion process is one among many metal additive manufacturing technologies that are commercially successful. Despite its numerous advantages and application in various fields, defects may occur during processing, which causes premature failure of components. Distortion is one of the major defects, and it depends on process settings, geometry, and orientation related. These distortions and dimensional deviations should be predicted faster for part qualification for many industrial applications. This work attempts to predict distortions based on shape descriptors to address this issue. Shape descriptors are definitions used to identify the details of the shape of a model to be printed. It can be either two dimensional or three dimensional. In this work, 2D shape descriptors are selected for analysis. These 2D shape descriptors can help identify how the design features significantly affect the part distortion in the PBF process. In this work, a few 2D shape descriptors are defined and modelled as a design feature to achieve the objective. Then the respective models are subjected to distortion analysis. The relationship between shape descriptors and distortion are studied through inherent strain method based simulation of distortion. It is observed from the results that most shape descriptors defined in this work can be used to predict the distortion. This work serves as a base and can help create knowledge for proposing design guidelines for the metal powder bed fusion process and helps in redesigning to prevent distortions.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":\"281 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-86089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-86089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

金属增材制造通过独特的设计能力为行业创造新的应用铺平了道路。粉末床熔融工艺是众多商业上成功的金属增材制造技术之一。尽管它有许多优点,在各个领域都有应用,但在加工过程中可能会出现缺陷,导致部件过早失效。变形是主要缺陷之一,它与工艺设置、几何形状和取向有关。在许多工业应用中,这些变形和尺寸偏差应该更快地预测零件资格。这项工作试图预测基于形状描述符的扭曲来解决这个问题。形状描述符是用来标识要打印的模型的形状细节的定义。它可以是二维的也可以是三维的。在这项工作中,选择二维形状描述符进行分析。这些二维形状描述符可以帮助识别设计特征如何显著影响PBF过程中的零件变形。在这项工作中,一些二维形状描述符被定义并建模为设计特征来实现目标。然后对各模型进行了失真分析。通过基于固有应变法的变形仿真,研究了形状描述子与变形之间的关系。从结果中可以看出,在这项工作中定义的大多数形状描述符都可以用来预测变形。这项工作可以作为一个基础,可以帮助为提出金属粉末床熔合工艺的设计指南提供知识,并有助于重新设计以防止变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Shape Descriptors for Distortion Prediction in Powder Bed Fusion Process
Metal additive manufacturing paves the way for industries to create new applications through unique design capabilities. The powder bed fusion process is one among many metal additive manufacturing technologies that are commercially successful. Despite its numerous advantages and application in various fields, defects may occur during processing, which causes premature failure of components. Distortion is one of the major defects, and it depends on process settings, geometry, and orientation related. These distortions and dimensional deviations should be predicted faster for part qualification for many industrial applications. This work attempts to predict distortions based on shape descriptors to address this issue. Shape descriptors are definitions used to identify the details of the shape of a model to be printed. It can be either two dimensional or three dimensional. In this work, 2D shape descriptors are selected for analysis. These 2D shape descriptors can help identify how the design features significantly affect the part distortion in the PBF process. In this work, a few 2D shape descriptors are defined and modelled as a design feature to achieve the objective. Then the respective models are subjected to distortion analysis. The relationship between shape descriptors and distortion are studied through inherent strain method based simulation of distortion. It is observed from the results that most shape descriptors defined in this work can be used to predict the distortion. This work serves as a base and can help create knowledge for proposing design guidelines for the metal powder bed fusion process and helps in redesigning to prevent distortions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信