帕累托抽样:通过导数追踪选择正确的权重

Amith Singhee, Pamela Castalino
{"title":"帕累托抽样:通过导数追踪选择正确的权重","authors":"Amith Singhee, Pamela Castalino","doi":"10.1145/1837274.1837503","DOIUrl":null,"url":null,"abstract":"The convex weighted-sum method for multi-objective optimization has the desirable property of not worsening the difficulty of the optimization problem, but can lead to very nonuniform sampling. This paper explains the relationship between the weights and the partial derivatives of the tradeoff surface, and shows how to use it to choose the right weights and uniformly sample largely convex tradeoff surfaces. It proposes a novel method, Derivative Pursuit (DP), that iteratively refines a simplicial approximation of the tradeoff surface by using partial derivative information to guide the weights generation. We demonstrate the improvements offered by DP on both synthetic and circuit test cases, including a 22 nm SRAM bitcell design problem with strict read and write yield constraints, and power and performance objectives.","PeriodicalId":87346,"journal":{"name":"Proceedings. Design Automation Conference","volume":"149 1","pages":"913-916"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pareto sampling: Choosing the right weights by derivative pursuit\",\"authors\":\"Amith Singhee, Pamela Castalino\",\"doi\":\"10.1145/1837274.1837503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convex weighted-sum method for multi-objective optimization has the desirable property of not worsening the difficulty of the optimization problem, but can lead to very nonuniform sampling. This paper explains the relationship between the weights and the partial derivatives of the tradeoff surface, and shows how to use it to choose the right weights and uniformly sample largely convex tradeoff surfaces. It proposes a novel method, Derivative Pursuit (DP), that iteratively refines a simplicial approximation of the tradeoff surface by using partial derivative information to guide the weights generation. We demonstrate the improvements offered by DP on both synthetic and circuit test cases, including a 22 nm SRAM bitcell design problem with strict read and write yield constraints, and power and performance objectives.\",\"PeriodicalId\":87346,\"journal\":{\"name\":\"Proceedings. Design Automation Conference\",\"volume\":\"149 1\",\"pages\":\"913-916\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1837274.1837503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1837274.1837503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

多目标优化的凸加权和方法具有不增加优化问题难度的优点,但会导致采样极不均匀。本文解释了权衡曲面的权值与偏导数之间的关系,并说明了如何利用它来选择正确的权值和均匀采样大凸权衡曲面。提出了一种新的方法——导数追踪(DP),该方法利用偏导数信息来指导权值的生成,迭代地对权衡曲面进行简化逼近。我们在合成和电路测试案例中展示了DP提供的改进,包括具有严格读写产量限制的22 nm SRAM位单元设计问题,以及功耗和性能目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pareto sampling: Choosing the right weights by derivative pursuit
The convex weighted-sum method for multi-objective optimization has the desirable property of not worsening the difficulty of the optimization problem, but can lead to very nonuniform sampling. This paper explains the relationship between the weights and the partial derivatives of the tradeoff surface, and shows how to use it to choose the right weights and uniformly sample largely convex tradeoff surfaces. It proposes a novel method, Derivative Pursuit (DP), that iteratively refines a simplicial approximation of the tradeoff surface by using partial derivative information to guide the weights generation. We demonstrate the improvements offered by DP on both synthetic and circuit test cases, including a 22 nm SRAM bitcell design problem with strict read and write yield constraints, and power and performance objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信