{"title":"利用监督式机器学习对增材制造镍合金缺陷进行分类","authors":"Ubaid Aziz, A. Bradshaw, J. Lim, Meurig Thomas","doi":"10.1080/02670836.2023.2207337","DOIUrl":null,"url":null,"abstract":"The presence of undesirable microstructural features in additively manufactured components, such as cracks, pores and lack of fusion defects presents a challenge for engineers, particularly if these components are applied in structure-critical applications. Such features might need to be manually classified, counted and their size distributions measured during metallographic evaluation, which is a time-consuming task. In this study, the performance of two supervised machine learning methods (kth-nearest neighbours and decision trees) to automatically classify typical defects found during metallographic examination of additively manufactured nickel alloys is briefly outlined and discussed.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"18 3 1","pages":"2464 - 2468"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of defects in additively manufactured nickel alloys using supervised machine learning\",\"authors\":\"Ubaid Aziz, A. Bradshaw, J. Lim, Meurig Thomas\",\"doi\":\"10.1080/02670836.2023.2207337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of undesirable microstructural features in additively manufactured components, such as cracks, pores and lack of fusion defects presents a challenge for engineers, particularly if these components are applied in structure-critical applications. Such features might need to be manually classified, counted and their size distributions measured during metallographic evaluation, which is a time-consuming task. In this study, the performance of two supervised machine learning methods (kth-nearest neighbours and decision trees) to automatically classify typical defects found during metallographic examination of additively manufactured nickel alloys is briefly outlined and discussed.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"18 3 1\",\"pages\":\"2464 - 2468\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2207337\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2207337","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification of defects in additively manufactured nickel alloys using supervised machine learning
The presence of undesirable microstructural features in additively manufactured components, such as cracks, pores and lack of fusion defects presents a challenge for engineers, particularly if these components are applied in structure-critical applications. Such features might need to be manually classified, counted and their size distributions measured during metallographic evaluation, which is a time-consuming task. In this study, the performance of two supervised machine learning methods (kth-nearest neighbours and decision trees) to automatically classify typical defects found during metallographic examination of additively manufactured nickel alloys is briefly outlined and discussed.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.