基于神经网络的无模型控制

Zhongjiu Zheng, Ning Wang
{"title":"基于神经网络的无模型控制","authors":"Zhongjiu Zheng, Ning Wang","doi":"10.1109/ICMLC.2002.1175425","DOIUrl":null,"url":null,"abstract":"A model-free control method for nonlinear plants is proposed. According to the neuron model and learning strategy in Wang et al. (1991), the neural network model is structured and the learning algorithm is also presented. Based on the neural network, the model-free controller is designed. In an example of control of a pH process, the simulation results show that the proposed control method can control a nonlinear plant efficiently.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"35 1","pages":"2180-2183 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model-free control based on neural networks\",\"authors\":\"Zhongjiu Zheng, Ning Wang\",\"doi\":\"10.1109/ICMLC.2002.1175425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model-free control method for nonlinear plants is proposed. According to the neuron model and learning strategy in Wang et al. (1991), the neural network model is structured and the learning algorithm is also presented. Based on the neural network, the model-free controller is designed. In an example of control of a pH process, the simulation results show that the proposed control method can control a nonlinear plant efficiently.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"35 1\",\"pages\":\"2180-2183 vol.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1175425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1175425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种非线性对象的无模型控制方法。根据Wang et al.(1991)的神经元模型和学习策略,构建了神经网络模型并给出了学习算法。基于神经网络,设计了无模型控制器。以pH过程控制为例,仿真结果表明所提出的控制方法能够有效地控制非线性对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-free control based on neural networks
A model-free control method for nonlinear plants is proposed. According to the neuron model and learning strategy in Wang et al. (1991), the neural network model is structured and the learning algorithm is also presented. Based on the neural network, the model-free controller is designed. In an example of control of a pH process, the simulation results show that the proposed control method can control a nonlinear plant efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信