Balamlile Z Zondo, O. Sadare, G. S. Simate, K. Moothi
{"title":"绿色合成氧化铁-金纳米复合材料修饰功能化多壁碳纳米管去除废水中的Pb2+离子","authors":"Balamlile Z Zondo, O. Sadare, G. S. Simate, K. Moothi","doi":"10.17159/wsa/2022.v48.i3.3959","DOIUrl":null,"url":null,"abstract":"Purification of wastewater before it is discharged into the aquatic environment is important in order to prevent pollution of clean water. This study investigated the applicability of functionalized multi-walled carbon nanotubes (MWCNTs) decorated with gold-iron oxide nanoparticles for the adsorptive removal of Pb2+ from synthetic wastewater. CNTs were commercially obtained and functionalized with a mixture of H2SO4/HNO3 acids. The CNTs were coated with gold-iron oxide nanoparticles, to enhance the adsorption of heavy metals. The gold-iron oxide nanoparticles were synthesized by reacting green tea leaf extract with iron chloride (FeCl2) and gold (III) chloride (HAuCl4) precursors. The composite was cross-linked using N, N-dimethylformadide (DMF). The adsorbents were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to assess their surface morphology, Fourier transform infrared (FTIR) spectroscopy to identify the functional groups present, X-ray diffraction (XRD) to ascertain the crystallographic structure of the green adsorbent and Raman spectroscopy to determine the sample purity. SEM results showed highly agglomerated and polydispersed nanoparticles, owing to the presence of phytochemicals in the tea extract and magnetic interaction between the individual particles indicating the successful synthesis of Au/Fe3O4 adsorbent. Furthermore, an increase in the amount of Pb2+ removed per unit mass (qe) of adsorbent from 1.233 to 7.266 mg‧g-1 at 298 K was observed. A high sorption capacity was noticed for MWCNT-Au/Fe3O4 as compared to the MWCNT-COOH. The Pb2+ removal percentage increased from 50% to 78% with an increase in MWCNT-Au/Fe3O4 dosage from 0.02 g to 0.1 g. Adsorption isotherm data fitted well to the Freundlich and Langmuir isotherm models for MWCNT-COOH and MWCNT-Au/Fe3O4 adsorbents and the rate of Pb(II) adsorption by MWCNT-Au/Fe3O4 encountered an increase with increasing solution temperature and followed the pseudo-second-order model. The synthesized MWCNT-Au/Fe3O4 has good potential in removing heavy metals from wastewater.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"29 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Removal of Pb2+ ions from synthetic wastewater using functionalized multi-walled carbon nanotubes decorated with green synthesized iron oxide–gold nanocomposite\",\"authors\":\"Balamlile Z Zondo, O. Sadare, G. S. Simate, K. Moothi\",\"doi\":\"10.17159/wsa/2022.v48.i3.3959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purification of wastewater before it is discharged into the aquatic environment is important in order to prevent pollution of clean water. This study investigated the applicability of functionalized multi-walled carbon nanotubes (MWCNTs) decorated with gold-iron oxide nanoparticles for the adsorptive removal of Pb2+ from synthetic wastewater. CNTs were commercially obtained and functionalized with a mixture of H2SO4/HNO3 acids. The CNTs were coated with gold-iron oxide nanoparticles, to enhance the adsorption of heavy metals. The gold-iron oxide nanoparticles were synthesized by reacting green tea leaf extract with iron chloride (FeCl2) and gold (III) chloride (HAuCl4) precursors. The composite was cross-linked using N, N-dimethylformadide (DMF). The adsorbents were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to assess their surface morphology, Fourier transform infrared (FTIR) spectroscopy to identify the functional groups present, X-ray diffraction (XRD) to ascertain the crystallographic structure of the green adsorbent and Raman spectroscopy to determine the sample purity. SEM results showed highly agglomerated and polydispersed nanoparticles, owing to the presence of phytochemicals in the tea extract and magnetic interaction between the individual particles indicating the successful synthesis of Au/Fe3O4 adsorbent. Furthermore, an increase in the amount of Pb2+ removed per unit mass (qe) of adsorbent from 1.233 to 7.266 mg‧g-1 at 298 K was observed. A high sorption capacity was noticed for MWCNT-Au/Fe3O4 as compared to the MWCNT-COOH. The Pb2+ removal percentage increased from 50% to 78% with an increase in MWCNT-Au/Fe3O4 dosage from 0.02 g to 0.1 g. Adsorption isotherm data fitted well to the Freundlich and Langmuir isotherm models for MWCNT-COOH and MWCNT-Au/Fe3O4 adsorbents and the rate of Pb(II) adsorption by MWCNT-Au/Fe3O4 encountered an increase with increasing solution temperature and followed the pseudo-second-order model. The synthesized MWCNT-Au/Fe3O4 has good potential in removing heavy metals from wastewater.\",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2022.v48.i3.3959\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i3.3959","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Removal of Pb2+ ions from synthetic wastewater using functionalized multi-walled carbon nanotubes decorated with green synthesized iron oxide–gold nanocomposite
Purification of wastewater before it is discharged into the aquatic environment is important in order to prevent pollution of clean water. This study investigated the applicability of functionalized multi-walled carbon nanotubes (MWCNTs) decorated with gold-iron oxide nanoparticles for the adsorptive removal of Pb2+ from synthetic wastewater. CNTs were commercially obtained and functionalized with a mixture of H2SO4/HNO3 acids. The CNTs were coated with gold-iron oxide nanoparticles, to enhance the adsorption of heavy metals. The gold-iron oxide nanoparticles were synthesized by reacting green tea leaf extract with iron chloride (FeCl2) and gold (III) chloride (HAuCl4) precursors. The composite was cross-linked using N, N-dimethylformadide (DMF). The adsorbents were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to assess their surface morphology, Fourier transform infrared (FTIR) spectroscopy to identify the functional groups present, X-ray diffraction (XRD) to ascertain the crystallographic structure of the green adsorbent and Raman spectroscopy to determine the sample purity. SEM results showed highly agglomerated and polydispersed nanoparticles, owing to the presence of phytochemicals in the tea extract and magnetic interaction between the individual particles indicating the successful synthesis of Au/Fe3O4 adsorbent. Furthermore, an increase in the amount of Pb2+ removed per unit mass (qe) of adsorbent from 1.233 to 7.266 mg‧g-1 at 298 K was observed. A high sorption capacity was noticed for MWCNT-Au/Fe3O4 as compared to the MWCNT-COOH. The Pb2+ removal percentage increased from 50% to 78% with an increase in MWCNT-Au/Fe3O4 dosage from 0.02 g to 0.1 g. Adsorption isotherm data fitted well to the Freundlich and Langmuir isotherm models for MWCNT-COOH and MWCNT-Au/Fe3O4 adsorbents and the rate of Pb(II) adsorption by MWCNT-Au/Fe3O4 encountered an increase with increasing solution temperature and followed the pseudo-second-order model. The synthesized MWCNT-Au/Fe3O4 has good potential in removing heavy metals from wastewater.
期刊介绍:
WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc.
Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).