JUICE太阳能电池阵的低强度低温(LILT)功率预测

M. Kroon, E. Bongers, Cyril Cavel, C. Baur, Francesco Faleg, S. Riva
{"title":"JUICE太阳能电池阵的低强度低温(LILT)功率预测","authors":"M. Kroon, E. Bongers, Cyril Cavel, C. Baur, Francesco Faleg, S. Riva","doi":"10.1109/ESPC.2019.8932020","DOIUrl":null,"url":null,"abstract":"The JUICE spacecraft will operate in an unprecedented environment of low solar intensity, low temperature and very high radiation fluence. Common approaches for power analyses would introduce a large uncertainty in the power prediction and assuming worst-case degradation and loss factors would result in a non-compliance on power. This paper reports the techniques used to accurately predict the solar array power during various phases of the mission. The power cases include a hot-case prediction at Closest Sun Approach (0.64 AU) and Low-Intensity, Low-Temperature (LILT) predictions at Jupiter Orbit Insertion (5.42 AU) and End-of-Life (EOL) (5.03 AU). The begin-of-life cell data were based on LILT performance measurements on ca. 40 cells. The mission particle dose is expressed in terms of Displacement Damage Dose (DDD) for the 3G28 solar cell. Solar cell degradation data measured under LILT conditions are compared with AMO degradation data. Due to the significant spread in LILT radiation test data, a Monte-Carlo analysis was performed to estimate a current mismatch factor at EOL.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"7 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Intensity Low-Temperature (LILT) Power prediction of JUICE solar array\",\"authors\":\"M. Kroon, E. Bongers, Cyril Cavel, C. Baur, Francesco Faleg, S. Riva\",\"doi\":\"10.1109/ESPC.2019.8932020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The JUICE spacecraft will operate in an unprecedented environment of low solar intensity, low temperature and very high radiation fluence. Common approaches for power analyses would introduce a large uncertainty in the power prediction and assuming worst-case degradation and loss factors would result in a non-compliance on power. This paper reports the techniques used to accurately predict the solar array power during various phases of the mission. The power cases include a hot-case prediction at Closest Sun Approach (0.64 AU) and Low-Intensity, Low-Temperature (LILT) predictions at Jupiter Orbit Insertion (5.42 AU) and End-of-Life (EOL) (5.03 AU). The begin-of-life cell data were based on LILT performance measurements on ca. 40 cells. The mission particle dose is expressed in terms of Displacement Damage Dose (DDD) for the 3G28 solar cell. Solar cell degradation data measured under LILT conditions are compared with AMO degradation data. Due to the significant spread in LILT radiation test data, a Monte-Carlo analysis was performed to estimate a current mismatch factor at EOL.\",\"PeriodicalId\":6734,\"journal\":{\"name\":\"2019 European Space Power Conference (ESPC)\",\"volume\":\"7 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Space Power Conference (ESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESPC.2019.8932020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

JUICE航天器将在一个前所未有的低太阳强度、低温和高辐射通量的环境中运行。常用的功率分析方法会在功率预测中引入很大的不确定性,并且假设最坏情况下的退化和损耗因素会导致功率不符合。本文报道了在任务的各个阶段准确预测太阳能电池阵功率的技术。功率情况包括最接近太阳的热情况预测(0.64 AU)和木星轨道插入(5.42 AU)和生命结束(EOL) (5.03 AU)的低强度,低温(LILT)预测。生命起始细胞的数据是基于大约40个细胞的LILT性能测量。任务粒子剂量以3G28太阳能电池的位移损伤剂量(DDD)表示。在LILT条件下测量的太阳能电池降解数据与AMO降解数据进行了比较。由于LILT辐射测试数据存在显著差异,因此采用蒙特卡罗分析来估计EOL处的电流失配因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Intensity Low-Temperature (LILT) Power prediction of JUICE solar array
The JUICE spacecraft will operate in an unprecedented environment of low solar intensity, low temperature and very high radiation fluence. Common approaches for power analyses would introduce a large uncertainty in the power prediction and assuming worst-case degradation and loss factors would result in a non-compliance on power. This paper reports the techniques used to accurately predict the solar array power during various phases of the mission. The power cases include a hot-case prediction at Closest Sun Approach (0.64 AU) and Low-Intensity, Low-Temperature (LILT) predictions at Jupiter Orbit Insertion (5.42 AU) and End-of-Life (EOL) (5.03 AU). The begin-of-life cell data were based on LILT performance measurements on ca. 40 cells. The mission particle dose is expressed in terms of Displacement Damage Dose (DDD) for the 3G28 solar cell. Solar cell degradation data measured under LILT conditions are compared with AMO degradation data. Due to the significant spread in LILT radiation test data, a Monte-Carlo analysis was performed to estimate a current mismatch factor at EOL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信