神经网络理论中的可变度量

Renáta Masárová
{"title":"神经网络理论中的可变度量","authors":"Renáta Masárová","doi":"10.2478/rput-2019-0032","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with application of a modified Fréchet metric to self-organizing neural networks, called Kohenen maps. The methodology used allows us to put more emphasis on the selected parameters in the input data. It can simplify finding the minimal distance dFj, since dFj∈ 〈0,1〉","PeriodicalId":21013,"journal":{"name":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","volume":"70 1","pages":"102 - 106"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fréchet Metric in Neural Network Theory\",\"authors\":\"Renáta Masárová\",\"doi\":\"10.2478/rput-2019-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with application of a modified Fréchet metric to self-organizing neural networks, called Kohenen maps. The methodology used allows us to put more emphasis on the selected parameters in the input data. It can simplify finding the minimal distance dFj, since dFj∈ 〈0,1〉\",\"PeriodicalId\":21013,\"journal\":{\"name\":\"Research Papers Faculty of Materials Science and Technology Slovak University of Technology\",\"volume\":\"70 1\",\"pages\":\"102 - 106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Papers Faculty of Materials Science and Technology Slovak University of Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rput-2019-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rput-2019-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种改进的fr度量在自组织神经网络中的应用,称为Kohenen映射。所使用的方法使我们能够更加强调输入数据中的选定参数。它可以简化寻找最小距离dFj,因为dFj∈< 0,1 >
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fréchet Metric in Neural Network Theory
Abstract This paper deals with application of a modified Fréchet metric to self-organizing neural networks, called Kohenen maps. The methodology used allows us to put more emphasis on the selected parameters in the input data. It can simplify finding the minimal distance dFj, since dFj∈ 〈0,1〉
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信