铜纳米团簇和超粒子的固态制备

Rui Wang, Yu-Bang Zheng, Yunsheng Xia
{"title":"铜纳米团簇和超粒子的固态制备","authors":"Rui Wang, Yu-Bang Zheng, Yunsheng Xia","doi":"10.3390/chemistry5030134","DOIUrl":null,"url":null,"abstract":"In this study, we present solid state processes for the fabrication of copper nanoclusters (NCs) and hierarchical supraparticles (SPs). To achieve this, copper salt and thiols are mixed and are then grinded for 10–15 min, and the nano-products are thereby obtained. Interestingly, it was found in this study that the formation of the NCs or SPs is completely dependent on the grinding methods that are used: with mechanical grinding, the products are several nanometer-sized NCs, whereas manual grinding in an agate mortar can obtain Cu SPs with diameters as low as 10 nm all the way up to 200 nm. The photoluminescence emission wavelength of the nano-products is located at ~680 nm. The Stokes shift of the obtained nanomaterials is more than 300 nm. The emission quantum yields of the Cu NCs and SPs are as high as 47.5% and 63%, respectively. Due to their facile fabrication processes and their favorable optical properties, the two as-prepared types of copper nano-materials exhibit great potential for bio-imaging and bio-sensing applications.","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid State Fabrication of Copper Nanoclusters and Supraparticles\",\"authors\":\"Rui Wang, Yu-Bang Zheng, Yunsheng Xia\",\"doi\":\"10.3390/chemistry5030134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present solid state processes for the fabrication of copper nanoclusters (NCs) and hierarchical supraparticles (SPs). To achieve this, copper salt and thiols are mixed and are then grinded for 10–15 min, and the nano-products are thereby obtained. Interestingly, it was found in this study that the formation of the NCs or SPs is completely dependent on the grinding methods that are used: with mechanical grinding, the products are several nanometer-sized NCs, whereas manual grinding in an agate mortar can obtain Cu SPs with diameters as low as 10 nm all the way up to 200 nm. The photoluminescence emission wavelength of the nano-products is located at ~680 nm. The Stokes shift of the obtained nanomaterials is more than 300 nm. The emission quantum yields of the Cu NCs and SPs are as high as 47.5% and 63%, respectively. Due to their facile fabrication processes and their favorable optical properties, the two as-prepared types of copper nano-materials exhibit great potential for bio-imaging and bio-sensing applications.\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5030134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemistry5030134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了制造铜纳米团簇(nc)和分层超粒子(SPs)的固态工艺。为了实现这一目标,将铜盐和硫醇混合,然后研磨10-15分钟,从而获得纳米产品。有趣的是,在这项研究中发现,纳米颗粒或SPs的形成完全取决于所使用的研磨方法:使用机械研磨,产品是几个纳米大小的纳米颗粒,而在玛瑙砂浆中手工研磨可以获得直径低至10纳米的铜SPs,一直到200纳米。纳米产品的光致发光发射波长位于~680 nm。所得纳米材料的Stokes位移大于300nm。Cu NCs和SPs的发射量子产率分别高达47.5%和63%。由于制备工艺简单,光学性能优越,这两种制备的铜纳米材料在生物成像和生物传感方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solid State Fabrication of Copper Nanoclusters and Supraparticles
In this study, we present solid state processes for the fabrication of copper nanoclusters (NCs) and hierarchical supraparticles (SPs). To achieve this, copper salt and thiols are mixed and are then grinded for 10–15 min, and the nano-products are thereby obtained. Interestingly, it was found in this study that the formation of the NCs or SPs is completely dependent on the grinding methods that are used: with mechanical grinding, the products are several nanometer-sized NCs, whereas manual grinding in an agate mortar can obtain Cu SPs with diameters as low as 10 nm all the way up to 200 nm. The photoluminescence emission wavelength of the nano-products is located at ~680 nm. The Stokes shift of the obtained nanomaterials is more than 300 nm. The emission quantum yields of the Cu NCs and SPs are as high as 47.5% and 63%, respectively. Due to their facile fabrication processes and their favorable optical properties, the two as-prepared types of copper nano-materials exhibit great potential for bio-imaging and bio-sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信