{"title":"从溶剂变色数据评价2(3)-四(叔丁基苯氧基)酞菁锌(II)的基态和激发态偶极矩","authors":"A. Ogunsipe, Patrick C. Bokolo","doi":"10.33945/sami/chemm.2019.6.6","DOIUrl":null,"url":null,"abstract":"This article presents a semi-empirical determination of ground state dipole moment (mg) and excited state dipole moment (me) of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPc) using the solvatochromic shift method, which is based on the Onsager’s reaction field theory. A combined application of the Bakshiev’s equation and the Kawski-Chamma-Viallet’s equation was used to determine the ratio me/mg while the use of the molecular-microscopic solvent polarity parameter yielded the term Dm (me- mg). The dipole moment of ZnTBPc in its excited singlet state (me=4.46D) is more than twice as much as that in its ground state (mg=2.14D).These values suggest that the higher charge separation is greater in the excited state of ZnTBPc than in its ground state.","PeriodicalId":9896,"journal":{"name":"Chemical Methodologies","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Ground and Excited State Dipole Moments of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato Zinc(II) from Solvatochromic Data\",\"authors\":\"A. Ogunsipe, Patrick C. Bokolo\",\"doi\":\"10.33945/sami/chemm.2019.6.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a semi-empirical determination of ground state dipole moment (mg) and excited state dipole moment (me) of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPc) using the solvatochromic shift method, which is based on the Onsager’s reaction field theory. A combined application of the Bakshiev’s equation and the Kawski-Chamma-Viallet’s equation was used to determine the ratio me/mg while the use of the molecular-microscopic solvent polarity parameter yielded the term Dm (me- mg). The dipole moment of ZnTBPc in its excited singlet state (me=4.46D) is more than twice as much as that in its ground state (mg=2.14D).These values suggest that the higher charge separation is greater in the excited state of ZnTBPc than in its ground state.\",\"PeriodicalId\":9896,\"journal\":{\"name\":\"Chemical Methodologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Methodologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33945/sami/chemm.2019.6.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Methodologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/chemm.2019.6.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of Ground and Excited State Dipole Moments of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato Zinc(II) from Solvatochromic Data
This article presents a semi-empirical determination of ground state dipole moment (mg) and excited state dipole moment (me) of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPc) using the solvatochromic shift method, which is based on the Onsager’s reaction field theory. A combined application of the Bakshiev’s equation and the Kawski-Chamma-Viallet’s equation was used to determine the ratio me/mg while the use of the molecular-microscopic solvent polarity parameter yielded the term Dm (me- mg). The dipole moment of ZnTBPc in its excited singlet state (me=4.46D) is more than twice as much as that in its ground state (mg=2.14D).These values suggest that the higher charge separation is greater in the excited state of ZnTBPc than in its ground state.