组织微环境微制造模型中的细胞运动

K. Parker, D. Ingber
{"title":"组织微环境微制造模型中的细胞运动","authors":"K. Parker, D. Ingber","doi":"10.1115/imece2001/bed-23075","DOIUrl":null,"url":null,"abstract":"\n We conducted studies using micropatterned substrates to elucidate how cell shape and geometric confinement regulates the inter- and intracellular signaling pathways required for cell motility. When cells were cultured on individual cell-sized square adhesive islands coated with ECM, they extend to the edge of the island and assume a square shape. When these cells were stimulated with growth factors, they preferentially extended lamellipodia from the corners versus the sides. This process was mediated by myosin-generated isometric tension that induced tight spatial localization of Rac in the corners. When two or three capillary endothelial cells are constrained to a fibronectin (FN) island, coordinated cell migration results in stable rotation of the entire system about its center. Thus, the emergent pattern is due to the coordinated migration behavior of the cells. These observations suggest that ECM-induced mechanotransduction potentiates compartmentalized signaling pathways and the multicellular organization required of tissue morphogenesis.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":"13 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Motility in Microfabricated Models of the Tissue Microenvironment\",\"authors\":\"K. Parker, D. Ingber\",\"doi\":\"10.1115/imece2001/bed-23075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We conducted studies using micropatterned substrates to elucidate how cell shape and geometric confinement regulates the inter- and intracellular signaling pathways required for cell motility. When cells were cultured on individual cell-sized square adhesive islands coated with ECM, they extend to the edge of the island and assume a square shape. When these cells were stimulated with growth factors, they preferentially extended lamellipodia from the corners versus the sides. This process was mediated by myosin-generated isometric tension that induced tight spatial localization of Rac in the corners. When two or three capillary endothelial cells are constrained to a fibronectin (FN) island, coordinated cell migration results in stable rotation of the entire system about its center. Thus, the emergent pattern is due to the coordinated migration behavior of the cells. These observations suggest that ECM-induced mechanotransduction potentiates compartmentalized signaling pathways and the multicellular organization required of tissue morphogenesis.\",\"PeriodicalId\":7238,\"journal\":{\"name\":\"Advances in Bioengineering\",\"volume\":\"13 7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/bed-23075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用微图案底物进行了研究,以阐明细胞形状和几何限制如何调节细胞运动所需的细胞间和细胞内信号通路。当细胞在涂有ECM的单个细胞大小的正方形粘附岛上培养时,它们延伸到岛的边缘并呈现正方形形状。当这些细胞受到生长因子的刺激时,它们优先从角而不是侧面延长板足。这一过程是由肌球蛋白产生的等距张力介导的,该张力诱导Rac在角落的紧密空间定位。当两个或三个毛细血管内皮细胞被限制在纤连蛋白(FN)岛时,协调的细胞迁移导致整个系统围绕其中心稳定旋转。因此,涌现模式是由于细胞的协调迁移行为。这些观察结果表明,ecm诱导的机械转导增强了区隔化的信号通路和组织形态发生所需的多细胞组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell Motility in Microfabricated Models of the Tissue Microenvironment
We conducted studies using micropatterned substrates to elucidate how cell shape and geometric confinement regulates the inter- and intracellular signaling pathways required for cell motility. When cells were cultured on individual cell-sized square adhesive islands coated with ECM, they extend to the edge of the island and assume a square shape. When these cells were stimulated with growth factors, they preferentially extended lamellipodia from the corners versus the sides. This process was mediated by myosin-generated isometric tension that induced tight spatial localization of Rac in the corners. When two or three capillary endothelial cells are constrained to a fibronectin (FN) island, coordinated cell migration results in stable rotation of the entire system about its center. Thus, the emergent pattern is due to the coordinated migration behavior of the cells. These observations suggest that ECM-induced mechanotransduction potentiates compartmentalized signaling pathways and the multicellular organization required of tissue morphogenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信