{"title":"利用Vorticella纤毛的粒子转运体","authors":"M. Nagai, Y. Hayasaka, T. Kawashima, T. Shibata","doi":"10.1109/MEMSYS.2013.6474178","DOIUrl":null,"url":null,"abstract":"An active transporter of particle is essential for mixing, pumping, and separation in microfluidics. We propose an application of cilia of Vorticella as a particle transporter in a microchannel. We apply transport of particle to mix fluid in confined and continuous environments. Two solutions in stationary and dynamic fluids are mixed by Vorticella. In a microchamber, single Vorticella increases the speed of mixing by two orders of magnitude higher than mixing by diffusion. 9 to 15 cells of Vorticella mix the particles in a dynamic fluid. Investigation of individual mixing effect by Vorticella reveal the vertical transport to a flow is effective.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"27 1","pages":"67-70"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle transporter using cilia of Vorticella\",\"authors\":\"M. Nagai, Y. Hayasaka, T. Kawashima, T. Shibata\",\"doi\":\"10.1109/MEMSYS.2013.6474178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An active transporter of particle is essential for mixing, pumping, and separation in microfluidics. We propose an application of cilia of Vorticella as a particle transporter in a microchannel. We apply transport of particle to mix fluid in confined and continuous environments. Two solutions in stationary and dynamic fluids are mixed by Vorticella. In a microchamber, single Vorticella increases the speed of mixing by two orders of magnitude higher than mixing by diffusion. 9 to 15 cells of Vorticella mix the particles in a dynamic fluid. Investigation of individual mixing effect by Vorticella reveal the vertical transport to a flow is effective.\",\"PeriodicalId\":92162,\"journal\":{\"name\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"volume\":\"27 1\",\"pages\":\"67-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2013.6474178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An active transporter of particle is essential for mixing, pumping, and separation in microfluidics. We propose an application of cilia of Vorticella as a particle transporter in a microchannel. We apply transport of particle to mix fluid in confined and continuous environments. Two solutions in stationary and dynamic fluids are mixed by Vorticella. In a microchamber, single Vorticella increases the speed of mixing by two orders of magnitude higher than mixing by diffusion. 9 to 15 cells of Vorticella mix the particles in a dynamic fluid. Investigation of individual mixing effect by Vorticella reveal the vertical transport to a flow is effective.