自然波动环境下白杨叶片结构与光合作用

IF 2.1 4区 生物学 Q2 PLANT SCIENCES
Photosynthetica Pub Date : 2022-03-28 eCollection Date: 2022-01-01 DOI:10.32615/ps.2022.012
X Y Lin, X X Wang, Q Y Zeng, Q Yang
{"title":"自然波动环境下白杨叶片结构与光合作用","authors":"X Y Lin, X X Wang, Q Y Zeng, Q Yang","doi":"10.32615/ps.2022.012","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to modulate photosynthesis is essential for plants to adapt to fluctuating growing conditions. <i>Populus</i> species show high tolerance to various and highly variable environments. To understand their response strategies against fluctuating environments, this study investigated the morphological and physiological differences of white poplar (<i>Populus alba</i>) leaves when grown in a phytotron, glasshouse, and field. Our results show that the palisade cells were elongated in the field, which would enhance intercellular CO<sub>2</sub> exchange. Photosynthetic capacity was the highest in the field leaves, as shown by higher electron transport rates (1.8 to 6.5 times) and carbon assimilation rates (2.7 to 4.2 times). The decrease of PSI acceptor-side limitation and increase of PSI donor-side limitation suggests changes in PSI redox status may contribute to photoprotection. This plasticity of white poplar allows adjusting its structure and photosynthesis under fluctuating conditions, which may partly enable its outstanding tolerance against environmental changes.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"1 1","pages":"240-250"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558500/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leaf structure and photosynthesis in <i>Populus alba</i> under naturally fluctuating environments.\",\"authors\":\"X Y Lin, X X Wang, Q Y Zeng, Q Yang\",\"doi\":\"10.32615/ps.2022.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to modulate photosynthesis is essential for plants to adapt to fluctuating growing conditions. <i>Populus</i> species show high tolerance to various and highly variable environments. To understand their response strategies against fluctuating environments, this study investigated the morphological and physiological differences of white poplar (<i>Populus alba</i>) leaves when grown in a phytotron, glasshouse, and field. Our results show that the palisade cells were elongated in the field, which would enhance intercellular CO<sub>2</sub> exchange. Photosynthetic capacity was the highest in the field leaves, as shown by higher electron transport rates (1.8 to 6.5 times) and carbon assimilation rates (2.7 to 4.2 times). The decrease of PSI acceptor-side limitation and increase of PSI donor-side limitation suggests changes in PSI redox status may contribute to photoprotection. This plasticity of white poplar allows adjusting its structure and photosynthesis under fluctuating conditions, which may partly enable its outstanding tolerance against environmental changes.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"1 1\",\"pages\":\"240-250\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2022.012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaf structure and photosynthesis in Populus alba under naturally fluctuating environments.

The ability to modulate photosynthesis is essential for plants to adapt to fluctuating growing conditions. Populus species show high tolerance to various and highly variable environments. To understand their response strategies against fluctuating environments, this study investigated the morphological and physiological differences of white poplar (Populus alba) leaves when grown in a phytotron, glasshouse, and field. Our results show that the palisade cells were elongated in the field, which would enhance intercellular CO2 exchange. Photosynthetic capacity was the highest in the field leaves, as shown by higher electron transport rates (1.8 to 6.5 times) and carbon assimilation rates (2.7 to 4.2 times). The decrease of PSI acceptor-side limitation and increase of PSI donor-side limitation suggests changes in PSI redox status may contribute to photoprotection. This plasticity of white poplar allows adjusting its structure and photosynthesis under fluctuating conditions, which may partly enable its outstanding tolerance against environmental changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthetica
Photosynthetica 生物-植物科学
CiteScore
5.60
自引率
7.40%
发文量
55
审稿时长
3.8 months
期刊介绍: Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side. The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信