{"title":"具有不连续系数和界面的椭圆偏微分方程的简单二阶有限差分","authors":"C. Tzou, S. Stechmann","doi":"10.2140/camcos.2019.14.121","DOIUrl":null,"url":null,"abstract":"In multi-phase fluid flow, fluid-structure interaction, and other applications, partial differential equations (PDEs) often arise with discontinuous coefficients and singular sources (e.g., Dirac delta functions). These complexities arise due to changes in material properties at an immersed interface or embedded boundary, which may have an irregular shape. Consequently, the solution and its gradient can be discontinuous, and numerical methods can be difficult to design. Here a new method is presented and analyzed, using a simple formulation of one-dimensional finite differences on a Cartesian grid, allowing for a relatively easy setup for one-, two-, or three-dimensional problems. The method preserves a sharp interface with discontinuous solutions, obtained from a small number of iterations (approximately five) of solving a symmetric linear system with updates to the right- hand side. Second-order accuracy is rigorously proven in one spatial dimension and demonstrated through numerical examples in two and three spatial dimensions. The method is tested here on the variable-coefficient Poisson equation, and it could be extended for use on time-dependent problems of heat transfer, fluid dynamics, or other applications.","PeriodicalId":49265,"journal":{"name":"Communications in Applied Mathematics and Computational Science","volume":"102 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simple second-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces\",\"authors\":\"C. Tzou, S. Stechmann\",\"doi\":\"10.2140/camcos.2019.14.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multi-phase fluid flow, fluid-structure interaction, and other applications, partial differential equations (PDEs) often arise with discontinuous coefficients and singular sources (e.g., Dirac delta functions). These complexities arise due to changes in material properties at an immersed interface or embedded boundary, which may have an irregular shape. Consequently, the solution and its gradient can be discontinuous, and numerical methods can be difficult to design. Here a new method is presented and analyzed, using a simple formulation of one-dimensional finite differences on a Cartesian grid, allowing for a relatively easy setup for one-, two-, or three-dimensional problems. The method preserves a sharp interface with discontinuous solutions, obtained from a small number of iterations (approximately five) of solving a symmetric linear system with updates to the right- hand side. Second-order accuracy is rigorously proven in one spatial dimension and demonstrated through numerical examples in two and three spatial dimensions. The method is tested here on the variable-coefficient Poisson equation, and it could be extended for use on time-dependent problems of heat transfer, fluid dynamics, or other applications.\",\"PeriodicalId\":49265,\"journal\":{\"name\":\"Communications in Applied Mathematics and Computational Science\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied Mathematics and Computational Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2019.14.121\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied Mathematics and Computational Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2019.14.121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Simple second-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces
In multi-phase fluid flow, fluid-structure interaction, and other applications, partial differential equations (PDEs) often arise with discontinuous coefficients and singular sources (e.g., Dirac delta functions). These complexities arise due to changes in material properties at an immersed interface or embedded boundary, which may have an irregular shape. Consequently, the solution and its gradient can be discontinuous, and numerical methods can be difficult to design. Here a new method is presented and analyzed, using a simple formulation of one-dimensional finite differences on a Cartesian grid, allowing for a relatively easy setup for one-, two-, or three-dimensional problems. The method preserves a sharp interface with discontinuous solutions, obtained from a small number of iterations (approximately five) of solving a symmetric linear system with updates to the right- hand side. Second-order accuracy is rigorously proven in one spatial dimension and demonstrated through numerical examples in two and three spatial dimensions. The method is tested here on the variable-coefficient Poisson equation, and it could be extended for use on time-dependent problems of heat transfer, fluid dynamics, or other applications.
期刊介绍:
CAMCoS accepts innovative papers in all areas where mathematics and applications interact. In particular, the journal welcomes papers where an idea is followed from beginning to end — from an abstract beginning to a piece of software, or from a computational observation to a mathematical theory.