P. Negus, J. Marshall, A. Steward, G. Mcgregor, Ruth A. O'Connor
{"title":"热水中的水生生物群:作为气候变暖影响类似物的流变二烯温泉排放物的热梯度","authors":"P. Negus, J. Marshall, A. Steward, G. Mcgregor, Ruth A. O'Connor","doi":"10.1051/kmae/2020042","DOIUrl":null,"url":null,"abstract":"Hot springs are characterised by water temperatures above 36.7 °C. Temperature decreases with distance in flow away from spring vents; this natural gradient provides a unique opportunity to investigate the influence of water temperature on aquatic biota. This study investigated the relationship between water temperature and the aquatic invertebrates and benthic diatoms in outflows from a hot spring complex in tropical north Queensland, Australia. Water temperature ranged from 62.7 °C at the vents to 26.0 °C at the location furthest downstream. Richness of benthic diatoms and aquatic invertebrates increased linearly in response to decreasing temperature, with no species present in the hot vents. Multivariate analysis showed that both community assemblages had a response to the temperature gradient. A drop in aquatic invertebrate richness and a change in assemblage composition occurred between 40 °C and 42 °C, indicating a threshold at this temperature. The nearby Einasleigh River has experienced several contemporary peaks in water temperature over 40 °C, which corresponds to this threshold level. The relationships indicate that consistent increases in water temperature expected under climate change could decrease biological richness and precipitate changes in the aquatic invertebrate and benthic diatom taxa of tropical aquatic ecosystems.","PeriodicalId":54748,"journal":{"name":"Knowledge and Management of Aquatic Ecosystems","volume":"42 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Aquatic biota in hot water: thermal gradients in rheocrene hot spring discharges as analogues for the effects of climate warming\",\"authors\":\"P. Negus, J. Marshall, A. Steward, G. Mcgregor, Ruth A. O'Connor\",\"doi\":\"10.1051/kmae/2020042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hot springs are characterised by water temperatures above 36.7 °C. Temperature decreases with distance in flow away from spring vents; this natural gradient provides a unique opportunity to investigate the influence of water temperature on aquatic biota. This study investigated the relationship between water temperature and the aquatic invertebrates and benthic diatoms in outflows from a hot spring complex in tropical north Queensland, Australia. Water temperature ranged from 62.7 °C at the vents to 26.0 °C at the location furthest downstream. Richness of benthic diatoms and aquatic invertebrates increased linearly in response to decreasing temperature, with no species present in the hot vents. Multivariate analysis showed that both community assemblages had a response to the temperature gradient. A drop in aquatic invertebrate richness and a change in assemblage composition occurred between 40 °C and 42 °C, indicating a threshold at this temperature. The nearby Einasleigh River has experienced several contemporary peaks in water temperature over 40 °C, which corresponds to this threshold level. The relationships indicate that consistent increases in water temperature expected under climate change could decrease biological richness and precipitate changes in the aquatic invertebrate and benthic diatom taxa of tropical aquatic ecosystems.\",\"PeriodicalId\":54748,\"journal\":{\"name\":\"Knowledge and Management of Aquatic Ecosystems\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Management of Aquatic Ecosystems\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1051/kmae/2020042\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Management of Aquatic Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/kmae/2020042","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Aquatic biota in hot water: thermal gradients in rheocrene hot spring discharges as analogues for the effects of climate warming
Hot springs are characterised by water temperatures above 36.7 °C. Temperature decreases with distance in flow away from spring vents; this natural gradient provides a unique opportunity to investigate the influence of water temperature on aquatic biota. This study investigated the relationship between water temperature and the aquatic invertebrates and benthic diatoms in outflows from a hot spring complex in tropical north Queensland, Australia. Water temperature ranged from 62.7 °C at the vents to 26.0 °C at the location furthest downstream. Richness of benthic diatoms and aquatic invertebrates increased linearly in response to decreasing temperature, with no species present in the hot vents. Multivariate analysis showed that both community assemblages had a response to the temperature gradient. A drop in aquatic invertebrate richness and a change in assemblage composition occurred between 40 °C and 42 °C, indicating a threshold at this temperature. The nearby Einasleigh River has experienced several contemporary peaks in water temperature over 40 °C, which corresponds to this threshold level. The relationships indicate that consistent increases in water temperature expected under climate change could decrease biological richness and precipitate changes in the aquatic invertebrate and benthic diatom taxa of tropical aquatic ecosystems.
期刊介绍:
Knowledge and Management of Aquatic Ecosystems (KMAE-Bulletin Français de la Pêche et de la Pisciculture since 1928) serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to freshwater ecosystems.
The journal publishes articles, short communications, reviews, comments and replies that contribute to a scientific understanding of freshwater ecosystems and the impact of human activities upon these systems. Its scope includes economic, social, and public administration studies, in so far as they are directly concerned with the management of freshwater ecosystems (e.g. European Water Framework Directive, USA Clean Water Act, Canadian Water Quality Guidelines, …) and prove of general interest to freshwater specialists. Papers on insular freshwater ecosystems and on transitional waters are welcome. KMAE is not a preferred journal for taxonomical, physiological, biological, toxicological studies, unless a clear link to ecological aspects can be established. Articles with a very descriptive content can be accepted if they are part of a broader ecological context.