利用先进的Cat群算法提高雾计算性能的最优调度

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
Xiaoyan Huo, Xue-ming Wang
{"title":"利用先进的Cat群算法提高雾计算性能的最优调度","authors":"Xiaoyan Huo, Xue-ming Wang","doi":"10.14569/ijacsa.2023.01407114","DOIUrl":null,"url":null,"abstract":"—Fog computing can be considered a decentralized computing approach that essentially extends the capabilities offered by cloud computing to the periphery of the network. In addition, due to its proximity to the user, fog computing proves to be highly efficient in minimizing the volume of data that needs to be transmitted, reducing overall network traffic, and shortening the distance that data must travel. But this technology, like other new technologies, has challenges, and scheduling and optimal allocation of resources is one of the most important of these challenges. Accordingly, this research aims to propose an optimal solution for efficient scheduling within the fog computing environment through the application of the advanced cat swarm optimization algorithm. In this solution, the two main behaviors of cats are implemented in the form of seek and tracking states. Accordingly, processing nodes are periodically examined and categorized based on the number of available resources; servers with highly available resources are prioritized in the scheduling process for efficient scheduling. Subsequently, the congested servers, which may be experiencing various issues, are migrated to alternative servers with ample resources using the virtual machine live migration technique. Ultimately, the effectiveness of the proposed solution is assessed using the iFogSim simulator, demonstrating notable reductions in execution time and energy consumption. So, the proposed solution has led to a 20% reduction in execution time while also improving energy efficiency by more than 15% on average. This optimization represents a trade-off between improving performance and reducing resource consumption.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"17 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Scheduling using Advanced Cat Swarm Optimization Algorithm to Improve Performance in Fog Computing\",\"authors\":\"Xiaoyan Huo, Xue-ming Wang\",\"doi\":\"10.14569/ijacsa.2023.01407114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Fog computing can be considered a decentralized computing approach that essentially extends the capabilities offered by cloud computing to the periphery of the network. In addition, due to its proximity to the user, fog computing proves to be highly efficient in minimizing the volume of data that needs to be transmitted, reducing overall network traffic, and shortening the distance that data must travel. But this technology, like other new technologies, has challenges, and scheduling and optimal allocation of resources is one of the most important of these challenges. Accordingly, this research aims to propose an optimal solution for efficient scheduling within the fog computing environment through the application of the advanced cat swarm optimization algorithm. In this solution, the two main behaviors of cats are implemented in the form of seek and tracking states. Accordingly, processing nodes are periodically examined and categorized based on the number of available resources; servers with highly available resources are prioritized in the scheduling process for efficient scheduling. Subsequently, the congested servers, which may be experiencing various issues, are migrated to alternative servers with ample resources using the virtual machine live migration technique. Ultimately, the effectiveness of the proposed solution is assessed using the iFogSim simulator, demonstrating notable reductions in execution time and energy consumption. So, the proposed solution has led to a 20% reduction in execution time while also improving energy efficiency by more than 15% on average. This optimization represents a trade-off between improving performance and reducing resource consumption.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.01407114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.01407114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

雾计算可以被认为是一种分散的计算方法,它本质上是将云计算提供的功能扩展到网络的外围。此外,由于雾计算离用户很近,因此在最小化需要传输的数据量、减少整体网络流量和缩短数据必须传输的距离方面被证明是非常高效的。但是,与其他新技术一样,这种技术也存在挑战,而资源的调度和最佳分配是这些挑战中最重要的挑战之一。因此,本研究旨在通过应用先进的猫群优化算法,提出雾计算环境下高效调度的最优解。在此解决方案中,猫的两种主要行为以寻求和跟踪状态的形式实现。相应地,根据可用资源的数量对处理节点进行定期检查和分类;具有高可用性资源的服务器在调度过程中具有优先级,以实现高效调度。随后,使用虚拟机实时迁移技术将可能遇到各种问题的拥塞服务器迁移到具有充足资源的备选服务器。最后,使用iFogSim模拟器评估了所提出的解决方案的有效性,证明了执行时间和能耗的显着减少。因此,提出的解决方案使执行时间减少了20%,同时平均提高了15%以上的能源效率。这种优化代表了提高性能和减少资源消耗之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Scheduling using Advanced Cat Swarm Optimization Algorithm to Improve Performance in Fog Computing
—Fog computing can be considered a decentralized computing approach that essentially extends the capabilities offered by cloud computing to the periphery of the network. In addition, due to its proximity to the user, fog computing proves to be highly efficient in minimizing the volume of data that needs to be transmitted, reducing overall network traffic, and shortening the distance that data must travel. But this technology, like other new technologies, has challenges, and scheduling and optimal allocation of resources is one of the most important of these challenges. Accordingly, this research aims to propose an optimal solution for efficient scheduling within the fog computing environment through the application of the advanced cat swarm optimization algorithm. In this solution, the two main behaviors of cats are implemented in the form of seek and tracking states. Accordingly, processing nodes are periodically examined and categorized based on the number of available resources; servers with highly available resources are prioritized in the scheduling process for efficient scheduling. Subsequently, the congested servers, which may be experiencing various issues, are migrated to alternative servers with ample resources using the virtual machine live migration technique. Ultimately, the effectiveness of the proposed solution is assessed using the iFogSim simulator, demonstrating notable reductions in execution time and energy consumption. So, the proposed solution has led to a 20% reduction in execution time while also improving energy efficiency by more than 15% on average. This optimization represents a trade-off between improving performance and reducing resource consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信