基于SOCP的非连续切分法求解一类整数双层非线性程序。

IF 1.6 Q2 INDUSTRIAL RELATIONS & LABOR
INDUSTRIAL RELATIONS JOURNAL Pub Date : 2024-01-01 Epub Date: 2023-05-27 DOI:10.1007/s10107-023-01965-1
Elisabeth Gaar, Jon Lee, Ivana Ljubić, Markus Sinnl, Kübra Tanınmış
{"title":"基于SOCP的非连续切分法求解一类整数双层非线性程序。","authors":"Elisabeth Gaar, Jon Lee, Ivana Ljubić, Markus Sinnl, Kübra Tanınmış","doi":"10.1007/s10107-023-01965-1","DOIUrl":null,"url":null,"abstract":"<p><p>We study a class of integer bilevel programs with second-order cone constraints at the upper-level and a convex-quadratic objective function and linear constraints at the lower-level. We develop disjunctive cuts (DCs) to separate bilevel-infeasible solutions using a second-order-cone-based cut-generating procedure. We propose DC separation strategies and consider several approaches for removing redundant disjunctions and normalization. Using these DCs, we propose a branch-and-cut algorithm for the problem class we study, and a cutting-plane method for the problem variant with only binary variables. We present an extensive computational study on a diverse set of instances, including instances with binary and with integer variables, and instances with a single and with multiple linking constraints. Our computational study demonstrates that the proposed enhancements of our solution approaches are effective for improving the performance. Moreover, both of our approaches outperform a state-of-the-art generic solver for mixed-integer bilevel linear programs that is able to solve a linearized version of our binary instances.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10107-023-01965-1.</p>","PeriodicalId":46619,"journal":{"name":"INDUSTRIAL RELATIONS JOURNAL","volume":"8 1","pages":"91-124"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269360/pdf/","citationCount":"0","resultStr":"{\"title\":\"On SOCP-based disjunctive cuts for solving a class of integer bilevel nonlinear programs.\",\"authors\":\"Elisabeth Gaar, Jon Lee, Ivana Ljubić, Markus Sinnl, Kübra Tanınmış\",\"doi\":\"10.1007/s10107-023-01965-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study a class of integer bilevel programs with second-order cone constraints at the upper-level and a convex-quadratic objective function and linear constraints at the lower-level. We develop disjunctive cuts (DCs) to separate bilevel-infeasible solutions using a second-order-cone-based cut-generating procedure. We propose DC separation strategies and consider several approaches for removing redundant disjunctions and normalization. Using these DCs, we propose a branch-and-cut algorithm for the problem class we study, and a cutting-plane method for the problem variant with only binary variables. We present an extensive computational study on a diverse set of instances, including instances with binary and with integer variables, and instances with a single and with multiple linking constraints. Our computational study demonstrates that the proposed enhancements of our solution approaches are effective for improving the performance. Moreover, both of our approaches outperform a state-of-the-art generic solver for mixed-integer bilevel linear programs that is able to solve a linearized version of our binary instances.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10107-023-01965-1.</p>\",\"PeriodicalId\":46619,\"journal\":{\"name\":\"INDUSTRIAL RELATIONS JOURNAL\",\"volume\":\"8 1\",\"pages\":\"91-124\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INDUSTRIAL RELATIONS JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-023-01965-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INDUSTRIAL RELATIONS & LABOR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INDUSTRIAL RELATIONS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10107-023-01965-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INDUSTRIAL RELATIONS & LABOR","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类上层具有二阶圆锥约束、下层具有凸四边形目标函数和线性约束的整数双级程序。我们利用基于二阶锥体的切分生成过程,开发了分离切分(DC),以分离双线程不可行解。我们提出了 DC 分离策略,并考虑了几种去除冗余分词和归一化的方法。利用这些 DC,我们为所研究的问题类别提出了一种分支-切割算法,并为只有二进制变量的问题变体提出了一种切割平面方法。我们对一系列不同的实例进行了广泛的计算研究,包括带有二进制变量和整数变量的实例,以及带有单一链接约束和多重链接约束的实例。计算研究表明,我们提出的增强型求解方法能有效提高性能。此外,我们的两种方法都优于最先进的混合整数双线性程序通用求解器,后者能够求解二元实例的线性化版本:在线版本包含补充材料,可查阅 10.1007/s10107-023-01965-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On SOCP-based disjunctive cuts for solving a class of integer bilevel nonlinear programs.

On SOCP-based disjunctive cuts for solving a class of integer bilevel nonlinear programs.

We study a class of integer bilevel programs with second-order cone constraints at the upper-level and a convex-quadratic objective function and linear constraints at the lower-level. We develop disjunctive cuts (DCs) to separate bilevel-infeasible solutions using a second-order-cone-based cut-generating procedure. We propose DC separation strategies and consider several approaches for removing redundant disjunctions and normalization. Using these DCs, we propose a branch-and-cut algorithm for the problem class we study, and a cutting-plane method for the problem variant with only binary variables. We present an extensive computational study on a diverse set of instances, including instances with binary and with integer variables, and instances with a single and with multiple linking constraints. Our computational study demonstrates that the proposed enhancements of our solution approaches are effective for improving the performance. Moreover, both of our approaches outperform a state-of-the-art generic solver for mixed-integer bilevel linear programs that is able to solve a linearized version of our binary instances.

Supplementary information: The online version contains supplementary material available at 10.1007/s10107-023-01965-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INDUSTRIAL RELATIONS JOURNAL
INDUSTRIAL RELATIONS JOURNAL INDUSTRIAL RELATIONS & LABOR-
CiteScore
2.50
自引率
14.30%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信