基于脑电图信号的深度学习癫痫发作检测方法

IF 0.1 Q4 MULTIDISCIPLINARY SCIENCES
Manoj Kaushik, Divyanshu Singh, Malay Kishore-Dutta, Carlos M. Travieso
{"title":"基于脑电图信号的深度学习癫痫发作检测方法","authors":"Manoj Kaushik, Divyanshu Singh, Malay Kishore-Dutta, Carlos M. Travieso","doi":"10.18845/tm.v35i8.6461","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) is an effective non-invasive way to detect sudden changes in neural brain activity, which generally occurs due to excessive electric discharge in the brain cells. EEG signals could be helpful in imminent seizure prediction if the machine could detect changes in EEG patterns. In this study, we have proposed a one-dimensional Convolutional Neural network (CNN) for the automatic detection of epilepsy seizures. The automated process might be convenient in the situations where a neurologist is unavailable and also help the neurologists in proper analysis of EEG signals and case diagnosis. We have used two publicly available EEG datasets, which were collected from the two African countries, Guinea-Bissau and Nigeria. The datasets contain EEG signals of 318 subjects. We have trained and verify the performance of our model by testing it on both the datasets and obtained the highest accuracy of 82.818%.","PeriodicalId":42957,"journal":{"name":"Tecnologia en Marcha","volume":"67 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach for epilepsy seizure detection using EEG signals\",\"authors\":\"Manoj Kaushik, Divyanshu Singh, Malay Kishore-Dutta, Carlos M. Travieso\",\"doi\":\"10.18845/tm.v35i8.6461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG) is an effective non-invasive way to detect sudden changes in neural brain activity, which generally occurs due to excessive electric discharge in the brain cells. EEG signals could be helpful in imminent seizure prediction if the machine could detect changes in EEG patterns. In this study, we have proposed a one-dimensional Convolutional Neural network (CNN) for the automatic detection of epilepsy seizures. The automated process might be convenient in the situations where a neurologist is unavailable and also help the neurologists in proper analysis of EEG signals and case diagnosis. We have used two publicly available EEG datasets, which were collected from the two African countries, Guinea-Bissau and Nigeria. The datasets contain EEG signals of 318 subjects. We have trained and verify the performance of our model by testing it on both the datasets and obtained the highest accuracy of 82.818%.\",\"PeriodicalId\":42957,\"journal\":{\"name\":\"Tecnologia en Marcha\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecnologia en Marcha\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18845/tm.v35i8.6461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia en Marcha","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18845/tm.v35i8.6461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)是一种有效的无创检测大脑神经活动突然变化的方法,这种变化通常是由于脑细胞过度放电引起的。如果机器能够检测到脑电图模式的变化,脑电图信号可能有助于预测即将发作的癫痫发作。在这项研究中,我们提出了一种用于癫痫发作自动检测的一维卷积神经网络(CNN)。自动化的过程可能会方便在没有神经科医生的情况下,也有助于神经科医生正确分析脑电图信号和病例诊断。我们使用了从几内亚比绍和尼日利亚两个非洲国家收集的两个公开可用的脑电图数据集。数据集包含318名受试者的脑电图信号。我们对模型的性能进行了训练和验证,并在两个数据集上进行了测试,获得了82.818%的最高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning approach for epilepsy seizure detection using EEG signals
Electroencephalogram (EEG) is an effective non-invasive way to detect sudden changes in neural brain activity, which generally occurs due to excessive electric discharge in the brain cells. EEG signals could be helpful in imminent seizure prediction if the machine could detect changes in EEG patterns. In this study, we have proposed a one-dimensional Convolutional Neural network (CNN) for the automatic detection of epilepsy seizures. The automated process might be convenient in the situations where a neurologist is unavailable and also help the neurologists in proper analysis of EEG signals and case diagnosis. We have used two publicly available EEG datasets, which were collected from the two African countries, Guinea-Bissau and Nigeria. The datasets contain EEG signals of 318 subjects. We have trained and verify the performance of our model by testing it on both the datasets and obtained the highest accuracy of 82.818%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tecnologia en Marcha
Tecnologia en Marcha MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
93
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信