光谱中聚类分析的特征选择

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Simon Crase, Benjamin Hall, Suresh N. Thennadil
{"title":"光谱中聚类分析的特征选择","authors":"Simon Crase, Benjamin Hall, Suresh N. Thennadil","doi":"10.32604/cmc.2022.022414","DOIUrl":null,"url":null,"abstract":": Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy, namely, high dimensionality and small sample size. In order to improve cluster analysis outcomes, feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality. However, for cluster analysis, this must be done in an unsupervised manner without the benefit of data labels. This paper presents a novel feature selection approach for cluster analysis, utilizing clusterability metrics to remove features that least contribute to a dataset’s tendency to cluster. Two versions are presented and evaluated: The Hopkins clusterability filter which utilizes the Hopkins test for spatial randomness and the Dip clusterability filter which utilizes the Dip test for unimodality. These new techniques, along with a range of existing filter and wrapper feature selection techniques were evaluated on eleven real-world spectroscopy datasets using internal and external clustering indices. Our newly proposed Hopkins clusterability filter performed the best of the six filter techniques evaluated. However, it was observed that results varied greatly for different techniques depending on the specifics of the dataset and the number of features selected, with significant instability observed for most techniques at low numbers of features. It was identified that the genetic algorithm wrapper technique avoided this instability, performed consistently across all datasets and resulted in better results on average than utilizing the all the features in the spectra.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"27 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Selection for Cluster Analysis in Spectroscopy\",\"authors\":\"Simon Crase, Benjamin Hall, Suresh N. Thennadil\",\"doi\":\"10.32604/cmc.2022.022414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy, namely, high dimensionality and small sample size. In order to improve cluster analysis outcomes, feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality. However, for cluster analysis, this must be done in an unsupervised manner without the benefit of data labels. This paper presents a novel feature selection approach for cluster analysis, utilizing clusterability metrics to remove features that least contribute to a dataset’s tendency to cluster. Two versions are presented and evaluated: The Hopkins clusterability filter which utilizes the Hopkins test for spatial randomness and the Dip clusterability filter which utilizes the Dip test for unimodality. These new techniques, along with a range of existing filter and wrapper feature selection techniques were evaluated on eleven real-world spectroscopy datasets using internal and external clustering indices. Our newly proposed Hopkins clusterability filter performed the best of the six filter techniques evaluated. However, it was observed that results varied greatly for different techniques depending on the specifics of the dataset and the number of features selected, with significant instability observed for most techniques at low numbers of features. It was identified that the genetic algorithm wrapper technique avoided this instability, performed consistently across all datasets and resulted in better results on average than utilizing the all the features in the spectra.\",\"PeriodicalId\":10440,\"journal\":{\"name\":\"Cmc-computers Materials & Continua\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cmc-computers Materials & Continua\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32604/cmc.2022.022414\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.022414","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于光谱数据具有高维数和小样本量的特点,光谱中的聚类分析面临着一些独特的挑战。为了提高聚类分析的结果,特征选择可以用来去除冗余或不相关的特征并降低维数。然而,对于聚类分析,这必须在没有数据标签的情况下以无监督的方式完成。本文提出了一种新的聚类分析特征选择方法,利用聚类性度量来去除对数据集聚类倾向贡献最小的特征。提出并评估了两种版本:利用霍普金斯空间随机性测试的霍普金斯聚类性滤波器和利用Dip单模性测试的Dip聚类性滤波器。这些新技术,以及一系列现有的滤波和包装特征选择技术,在11个真实世界的光谱数据集上使用内部和外部聚类指数进行了评估。我们新提出的霍普金斯聚类性滤波器在评估的六种滤波器技术中表现最好。然而,我们观察到,根据数据集的具体情况和所选择的特征数量,不同技术的结果差异很大,在特征数量较少的情况下,大多数技术都观察到显著的不稳定性。结果表明,遗传算法包装技术避免了这种不稳定性,在所有数据集上表现一致,平均效果优于利用光谱中的所有特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Cluster Analysis in Spectroscopy
: Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy, namely, high dimensionality and small sample size. In order to improve cluster analysis outcomes, feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality. However, for cluster analysis, this must be done in an unsupervised manner without the benefit of data labels. This paper presents a novel feature selection approach for cluster analysis, utilizing clusterability metrics to remove features that least contribute to a dataset’s tendency to cluster. Two versions are presented and evaluated: The Hopkins clusterability filter which utilizes the Hopkins test for spatial randomness and the Dip clusterability filter which utilizes the Dip test for unimodality. These new techniques, along with a range of existing filter and wrapper feature selection techniques were evaluated on eleven real-world spectroscopy datasets using internal and external clustering indices. Our newly proposed Hopkins clusterability filter performed the best of the six filter techniques evaluated. However, it was observed that results varied greatly for different techniques depending on the specifics of the dataset and the number of features selected, with significant instability observed for most techniques at low numbers of features. It was identified that the genetic algorithm wrapper technique avoided this instability, performed consistently across all datasets and resulted in better results on average than utilizing the all the features in the spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cmc-computers Materials & Continua
Cmc-computers Materials & Continua 工程技术-材料科学:综合
CiteScore
5.30
自引率
19.40%
发文量
345
审稿时长
1 months
期刊介绍: This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials. Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信