{"title":"3-刚性和二元$C_2^1$样条I: Whiteley极大性猜想","authors":"K. Clinch, B. Jackson, Shin-ichi Tanigawa","doi":"10.19086/da.34691","DOIUrl":null,"url":null,"abstract":"A long-standing conjecture in rigidity theory states that the generic 3-dimensional rigidity matroid is the unique maximal abstract 3-rigidity matroid (with respect to the weak order on matroids). Based on a close similarity between the generic 3-dimensional rigidity matroid and the generic $C_2^1$-cofactor matroid from approximation theory, Whiteley made an analogous conjecture in 1996 that the generic $C_2^1$-cofactor matroid is the unique maximal abstract 3-rigidity matroid. We verify Whiteley's conjecture in this paper. A key step in our proof is to verify a second conjecture of Whiteley that the `double V-replacement operation' preserves independence in the generic $C_2^1$-cofactor matroid.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Abstract 3-Rigidity and Bivariate $C_2^1$-Splines I: Whiteley's Maximality Conjecture\",\"authors\":\"K. Clinch, B. Jackson, Shin-ichi Tanigawa\",\"doi\":\"10.19086/da.34691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A long-standing conjecture in rigidity theory states that the generic 3-dimensional rigidity matroid is the unique maximal abstract 3-rigidity matroid (with respect to the weak order on matroids). Based on a close similarity between the generic 3-dimensional rigidity matroid and the generic $C_2^1$-cofactor matroid from approximation theory, Whiteley made an analogous conjecture in 1996 that the generic $C_2^1$-cofactor matroid is the unique maximal abstract 3-rigidity matroid. We verify Whiteley's conjecture in this paper. A key step in our proof is to verify a second conjecture of Whiteley that the `double V-replacement operation' preserves independence in the generic $C_2^1$-cofactor matroid.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/da.34691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.34691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract 3-Rigidity and Bivariate $C_2^1$-Splines I: Whiteley's Maximality Conjecture
A long-standing conjecture in rigidity theory states that the generic 3-dimensional rigidity matroid is the unique maximal abstract 3-rigidity matroid (with respect to the weak order on matroids). Based on a close similarity between the generic 3-dimensional rigidity matroid and the generic $C_2^1$-cofactor matroid from approximation theory, Whiteley made an analogous conjecture in 1996 that the generic $C_2^1$-cofactor matroid is the unique maximal abstract 3-rigidity matroid. We verify Whiteley's conjecture in this paper. A key step in our proof is to verify a second conjecture of Whiteley that the `double V-replacement operation' preserves independence in the generic $C_2^1$-cofactor matroid.