{"title":"一种网络入侵检测的联邦学习方法","authors":"Zhongyun Tang, Haiyang Hu, Chonghuan Xu","doi":"10.1002/cpe.6812","DOIUrl":null,"url":null,"abstract":"<p>Intrusion detection is a common network security defense technology. At present, there are many research using deep learning to realize network intrusion detection. This method has been proved to have high detection accuracy. However, deep learning requires large-scale data sets for training. The network intrusion detection data set of some institution is lacking. If the network traffic data set is uploaded for centralized deep learning training, it will face privacy problems. Combined with the characteristics of network traffic, this article proposes a network intrusion detection method based on federated learning. This method allows multiple ISPs or other institutions to conduct joint deep learning training on the premise of retaining local data. It not only improves the detection accuracy of the model but also protects privacy in network traffic. This article conducts experiments on the CICIDS2017 network intrusion detection data set. Experimental results show that worker participating in federated learning have higher detection accuracy. The accuracy and other performance of federated learning are almost equal to those of centralized deep learning models.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"34 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A federated learning method for network intrusion detection\",\"authors\":\"Zhongyun Tang, Haiyang Hu, Chonghuan Xu\",\"doi\":\"10.1002/cpe.6812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intrusion detection is a common network security defense technology. At present, there are many research using deep learning to realize network intrusion detection. This method has been proved to have high detection accuracy. However, deep learning requires large-scale data sets for training. The network intrusion detection data set of some institution is lacking. If the network traffic data set is uploaded for centralized deep learning training, it will face privacy problems. Combined with the characteristics of network traffic, this article proposes a network intrusion detection method based on federated learning. This method allows multiple ISPs or other institutions to conduct joint deep learning training on the premise of retaining local data. It not only improves the detection accuracy of the model but also protects privacy in network traffic. This article conducts experiments on the CICIDS2017 network intrusion detection data set. Experimental results show that worker participating in federated learning have higher detection accuracy. The accuracy and other performance of federated learning are almost equal to those of centralized deep learning models.</p>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"34 10\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.6812\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.6812","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A federated learning method for network intrusion detection
Intrusion detection is a common network security defense technology. At present, there are many research using deep learning to realize network intrusion detection. This method has been proved to have high detection accuracy. However, deep learning requires large-scale data sets for training. The network intrusion detection data set of some institution is lacking. If the network traffic data set is uploaded for centralized deep learning training, it will face privacy problems. Combined with the characteristics of network traffic, this article proposes a network intrusion detection method based on federated learning. This method allows multiple ISPs or other institutions to conduct joint deep learning training on the premise of retaining local data. It not only improves the detection accuracy of the model but also protects privacy in network traffic. This article conducts experiments on the CICIDS2017 network intrusion detection data set. Experimental results show that worker participating in federated learning have higher detection accuracy. The accuracy and other performance of federated learning are almost equal to those of centralized deep learning models.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.