空间规划中拓扑层次上的动态空间排序

B Medjdoub , B Yannou
{"title":"空间规划中拓扑层次上的动态空间排序","authors":"B Medjdoub ,&nbsp;B Yannou","doi":"10.1016/S0954-1810(00)00027-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we shall be dealing with the problem of space layout planning. We present an approach based on an intermediate topological level with a dynamic space ordering (dso) heuristic. Our software ARCHiPLAN proceeds through a number of steps. First all the topologically different solutions, without presuming any precise dimension, are enumerated. Next, we may evolve in this topological solution space, and than refine some of them to form consistent geometrical solutions. For each topological solution chosen, the optimising geometrical solution is determined from a cost, useful surface or wall length. By using a dynamic space ordering heuristic in the topological level the enumeration time has been reduced.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00027-3","citationCount":"38","resultStr":"{\"title\":\"Dynamic space ordering at a topological level in space planning\",\"authors\":\"B Medjdoub ,&nbsp;B Yannou\",\"doi\":\"10.1016/S0954-1810(00)00027-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we shall be dealing with the problem of space layout planning. We present an approach based on an intermediate topological level with a dynamic space ordering (dso) heuristic. Our software ARCHiPLAN proceeds through a number of steps. First all the topologically different solutions, without presuming any precise dimension, are enumerated. Next, we may evolve in this topological solution space, and than refine some of them to form consistent geometrical solutions. For each topological solution chosen, the optimising geometrical solution is determined from a cost, useful surface or wall length. By using a dynamic space ordering heuristic in the topological level the enumeration time has been reduced.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00027-3\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181000000273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181000000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在本文中,我们将讨论空间布局规划问题。我们提出了一种基于动态空间排序(dso)启发式的中间拓扑层方法。我们的软件ARCHiPLAN通过许多步骤进行。首先,在不假设任何精确维度的情况下,列举了所有拓扑上不同的解。接下来,我们可以在这个拓扑解空间中进化,然后提炼其中的一些以形成一致的几何解。对于选择的每个拓扑解决方案,优化几何解决方案由成本,有用的表面或壁长确定。通过在拓扑层使用动态空间排序启发式算法,减少了枚举时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic space ordering at a topological level in space planning

In this paper, we shall be dealing with the problem of space layout planning. We present an approach based on an intermediate topological level with a dynamic space ordering (dso) heuristic. Our software ARCHiPLAN proceeds through a number of steps. First all the topologically different solutions, without presuming any precise dimension, are enumerated. Next, we may evolve in this topological solution space, and than refine some of them to form consistent geometrical solutions. For each topological solution chosen, the optimising geometrical solution is determined from a cost, useful surface or wall length. By using a dynamic space ordering heuristic in the topological level the enumeration time has been reduced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信