基于MLP/ bp的MIMO DFEs在具有ACI干扰的严重ISI信道中失真16-QAM信号恢复

Terng-Ren Hsu, Terng-Yin Hsu, Lin-Jin Wu, Zong-Cheng Ou
{"title":"基于MLP/ bp的MIMO DFEs在具有ACI干扰的严重ISI信道中失真16-QAM信号恢复","authors":"Terng-Ren Hsu, Terng-Yin Hsu, Lin-Jin Wu, Zong-Cheng Ou","doi":"10.1109/IMPACT.2009.5382290","DOIUrl":null,"url":null,"abstract":"In this work, we base on multi-layered perceptron neural networks with backpropagation algorithm (MLP/BP) to construct multi-input multi-output (MIMO) decision feedback equalizers (DFEs). The proposal is used to recover distorted 16-point quadrature amplitude modulation (16-QAM) signal. From the simulations, we note that the proposed approach can recover severe distorted signals as well as suppress intersymbol interference (ISI), adjacent channel interference (ACI) and background additive white Gaussian noise (AWGN). As compared with a set of LMS DFEs, the proposed scheme can provide better BER and PER performance.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"19 1","pages":"726-729"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MLP/BP-based MIMO DFEs for distorted 16-QAM signal recovery in severe ISI channels with ACI disturbances\",\"authors\":\"Terng-Ren Hsu, Terng-Yin Hsu, Lin-Jin Wu, Zong-Cheng Ou\",\"doi\":\"10.1109/IMPACT.2009.5382290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we base on multi-layered perceptron neural networks with backpropagation algorithm (MLP/BP) to construct multi-input multi-output (MIMO) decision feedback equalizers (DFEs). The proposal is used to recover distorted 16-point quadrature amplitude modulation (16-QAM) signal. From the simulations, we note that the proposed approach can recover severe distorted signals as well as suppress intersymbol interference (ISI), adjacent channel interference (ACI) and background additive white Gaussian noise (AWGN). As compared with a set of LMS DFEs, the proposed scheme can provide better BER and PER performance.\",\"PeriodicalId\":6410,\"journal\":{\"name\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"volume\":\"19 1\",\"pages\":\"726-729\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2009.5382290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们基于多层感知器神经网络与反向传播算法(MLP/BP)来构建多输入多输出(MIMO)决策反馈均衡器(dfe)。该方案用于恢复失真的16点正交调幅(16-QAM)信号。仿真结果表明,该方法不仅能恢复严重失真信号,还能抑制码间干扰(ISI)、相邻信道干扰(ACI)和背景加性高斯白噪声(AWGN)。与一组LMS DFEs相比,该方案具有更好的误码率和PER性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MLP/BP-based MIMO DFEs for distorted 16-QAM signal recovery in severe ISI channels with ACI disturbances
In this work, we base on multi-layered perceptron neural networks with backpropagation algorithm (MLP/BP) to construct multi-input multi-output (MIMO) decision feedback equalizers (DFEs). The proposal is used to recover distorted 16-point quadrature amplitude modulation (16-QAM) signal. From the simulations, we note that the proposed approach can recover severe distorted signals as well as suppress intersymbol interference (ISI), adjacent channel interference (ACI) and background additive white Gaussian noise (AWGN). As compared with a set of LMS DFEs, the proposed scheme can provide better BER and PER performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信