Behnam Karimzadeh Mostafabadi, M. A. Kachoie, E. Rahimi
{"title":"猪尾草精油抑菌作用的体外分析","authors":"Behnam Karimzadeh Mostafabadi, M. A. Kachoie, E. Rahimi","doi":"10.3233/mgc-220006","DOIUrl":null,"url":null,"abstract":"By benefits of using silicon and vermicompost based biofertilizers and also induction of drought stress for growing more efficient medicinal plants, we investigated such issues on growing Cynara scolymus (C. scolymus), as one of the most significant edible medicinal plants. In this regard, the antimicrobial effects of grown C. scolymus essential oil was investigated against some foodborne pathogens. Different concentrations of silicon and vermicompost with and without drought stress were considered for growing the plant and the extracted essential oils were extracted to examine their antimicrobial effects against different bacterial agents. Using vermicompost and silicon and 50% moisture discharge yielded significant increase in the mean diameter of growth inhibition zone and significant decrease in the minimum inhibitory concentration of tested bacteria (P < 0.05). The highest diameters of the inhibition zones of S. aureus, S. saprophyticus, P. aeruginosa, S. dysenteriae, and S. typhi were found for C. scolymus essential oil treated with 8 mmol silicon and conventional irrigation (14.92 mm), 4 mmol silicon and 50% moisture discharge (15.28 mm), 50% vermicompost and 50% moisture discharge (15.71 mm), 8 mmol silicon and conventional irrigation (17.34 mm) and 25% vermicompost, and 50% moisture discharge (15.48 mm), respectively. Antimicrobial effects of some treatments of C. scolymus were higher than some kinds of referenced antibiotics such as erythromycin. These findings could be used for the production of antibiotic drugs for specific purposes against certain bacteria.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial effects of Cynara scolymus essential oil: In vitro analysis\",\"authors\":\"Behnam Karimzadeh Mostafabadi, M. A. Kachoie, E. Rahimi\",\"doi\":\"10.3233/mgc-220006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By benefits of using silicon and vermicompost based biofertilizers and also induction of drought stress for growing more efficient medicinal plants, we investigated such issues on growing Cynara scolymus (C. scolymus), as one of the most significant edible medicinal plants. In this regard, the antimicrobial effects of grown C. scolymus essential oil was investigated against some foodborne pathogens. Different concentrations of silicon and vermicompost with and without drought stress were considered for growing the plant and the extracted essential oils were extracted to examine their antimicrobial effects against different bacterial agents. Using vermicompost and silicon and 50% moisture discharge yielded significant increase in the mean diameter of growth inhibition zone and significant decrease in the minimum inhibitory concentration of tested bacteria (P < 0.05). The highest diameters of the inhibition zones of S. aureus, S. saprophyticus, P. aeruginosa, S. dysenteriae, and S. typhi were found for C. scolymus essential oil treated with 8 mmol silicon and conventional irrigation (14.92 mm), 4 mmol silicon and 50% moisture discharge (15.28 mm), 50% vermicompost and 50% moisture discharge (15.71 mm), 8 mmol silicon and conventional irrigation (17.34 mm) and 25% vermicompost, and 50% moisture discharge (15.48 mm), respectively. Antimicrobial effects of some treatments of C. scolymus were higher than some kinds of referenced antibiotics such as erythromycin. These findings could be used for the production of antibiotic drugs for specific purposes against certain bacteria.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-220006\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-220006","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Antimicrobial effects of Cynara scolymus essential oil: In vitro analysis
By benefits of using silicon and vermicompost based biofertilizers and also induction of drought stress for growing more efficient medicinal plants, we investigated such issues on growing Cynara scolymus (C. scolymus), as one of the most significant edible medicinal plants. In this regard, the antimicrobial effects of grown C. scolymus essential oil was investigated against some foodborne pathogens. Different concentrations of silicon and vermicompost with and without drought stress were considered for growing the plant and the extracted essential oils were extracted to examine their antimicrobial effects against different bacterial agents. Using vermicompost and silicon and 50% moisture discharge yielded significant increase in the mean diameter of growth inhibition zone and significant decrease in the minimum inhibitory concentration of tested bacteria (P < 0.05). The highest diameters of the inhibition zones of S. aureus, S. saprophyticus, P. aeruginosa, S. dysenteriae, and S. typhi were found for C. scolymus essential oil treated with 8 mmol silicon and conventional irrigation (14.92 mm), 4 mmol silicon and 50% moisture discharge (15.28 mm), 50% vermicompost and 50% moisture discharge (15.71 mm), 8 mmol silicon and conventional irrigation (17.34 mm) and 25% vermicompost, and 50% moisture discharge (15.48 mm), respectively. Antimicrobial effects of some treatments of C. scolymus were higher than some kinds of referenced antibiotics such as erythromycin. These findings could be used for the production of antibiotic drugs for specific purposes against certain bacteria.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.