向量自回归辨识中非结构化估计量的可靠性

Xin Lu, K. Nishiyama
{"title":"向量自回归辨识中非结构化估计量的可靠性","authors":"Xin Lu, K. Nishiyama","doi":"10.1109/SIPS.2007.4387615","DOIUrl":null,"url":null,"abstract":"This paper discusses the dependability of the maximum like-lihood estimator (MLE) when the dynamical model is specified as vector autoregression (VAR). When the size of the data vector in VAR is enlarged a little, the distributions of the estimates by the MLE become too wide to satisfy the precision requirement. Consequently, it is necessary to largely increase the length of the tested data for sharpening the distributions and obtaining the suitable estimates. In this paper, we give an explanation of this phenomenon and analyze the convergence relation of each parameter.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"37 1","pages":"589-594"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dependability of Unstructured Estimator in Vector Autoregression Identification\",\"authors\":\"Xin Lu, K. Nishiyama\",\"doi\":\"10.1109/SIPS.2007.4387615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the dependability of the maximum like-lihood estimator (MLE) when the dynamical model is specified as vector autoregression (VAR). When the size of the data vector in VAR is enlarged a little, the distributions of the estimates by the MLE become too wide to satisfy the precision requirement. Consequently, it is necessary to largely increase the length of the tested data for sharpening the distributions and obtaining the suitable estimates. In this paper, we give an explanation of this phenomenon and analyze the convergence relation of each parameter.\",\"PeriodicalId\":93225,\"journal\":{\"name\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"volume\":\"37 1\",\"pages\":\"589-594\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2007.4387615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了当动态模型被指定为向量自回归(VAR)时最大似然估计量(MLE)的可靠性。当VAR中数据向量的大小稍大时,最大似然估计的分布会变得太宽,无法满足精度要求。因此,有必要大幅增加测试数据的长度,以锐化分布并获得合适的估计。本文给出了这一现象的解释,并分析了各参数的收敛关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dependability of Unstructured Estimator in Vector Autoregression Identification
This paper discusses the dependability of the maximum like-lihood estimator (MLE) when the dynamical model is specified as vector autoregression (VAR). When the size of the data vector in VAR is enlarged a little, the distributions of the estimates by the MLE become too wide to satisfy the precision requirement. Consequently, it is necessary to largely increase the length of the tested data for sharpening the distributions and obtaining the suitable estimates. In this paper, we give an explanation of this phenomenon and analyze the convergence relation of each parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信